1
|
Zhu X, Huang Y, Liu J, Kong B, Cui C, Han G. Comprehensive metabolomics study identifies SN-38 organ specific toxicity in mice. Sci Rep 2025; 15:16405. [PMID: 40355563 PMCID: PMC12069665 DOI: 10.1038/s41598-025-01753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
SN-38 (7-ethyl-10-hydroxycamptothecin), the active metabolite of irinotecan, is a crucial anticancer agent frequently studied in drug delivery systems. Irinotecan (CPT-11) is used to treat various solid tumors but is associated with adverse effects such as nausea, vomiting, diarrhea, and steatohepatitis. However, the precise biochemical pathways underlying these side effects remain unclear. To explore SN-38's toxic mechanisms and provide insights for clinical applications of SN-38 delivery systems, we performed untargeted metabolomics to assess metabolic changes in the lungs, heart, stomach, blood, spleen, intestine, liver, and kidneys of SN-38-exposed male mice. Mice were divided into two groups: SN-38 (20 mg/kg/day intraperitoneal) and control (blank solvent). Gas chromatography-mass spectrometry (GC-MS) identified significant metabolic disturbances in all tissues. Specifically, 24, 15, 12, 21, 35, 26, 18, and 28 differential metabolites were detected in the lungs, heart, stomach, blood, spleen, intestine, liver, and kidneys, respectively. KEGG pathway enrichment revealed significant changes in metabolic pathways across these organs, particularly in purine, pyrimidine, amino acid, and glyceric acid metabolism, implicating disruptions in protein synthesis, cellular homeostasis, energy metabolism, and antioxidant defenses. This study is the first to characterize SN-38's multi-organ toxicity using metabolomics.
Collapse
Affiliation(s)
- Xiaodong Zhu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Ya Huang
- College of Traditional Chinese Medicine, Shandong Polytechnic College, Jining, 272000, China
| | - Jianguo Liu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Bo Kong
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, China.
| |
Collapse
|
2
|
Dajti E, Serenari M, Malvi D, Dajti G, Ravaioli F, Colecchia L, Marasco G, Caputo F, Renzulli M, Vasuri F, Vestito A, Azzaroli F, Barbara G, Ravaioli M, Festi D, D'Errico A, Cescon M, Colecchia A. Porto-sinusoidal vascular disorder in surgical candidates for liver metastases: Prevalence, noninvasive diagnosis, and burden on surgical outcomes. Liver Transpl 2025; 31:58-69. [PMID: 39311847 DOI: 10.1097/lvt.0000000000000489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 12/13/2024]
Abstract
Chemotherapy can cause vascular and metabolic liver injury in patients with liver metastases, but scarce data are available. We aimed to (i) describe the prevalence of porto-sinusoidal vascular disorder (PSVD) among patients undergoing resection for liver metastases; and (ii) assess whether liver (LSM) and spleen stiffness measurements could diagnose PSVD and predict postoperative complications. This is a prospective single-center study enrolling consecutive patients undergoing hepatic resection for metastases at a tertiary center. For each patient, we evaluated previous exposure to chemotherapy, comorbidities, elastography, type of surgery, histological features at the resection specimen, morbidity (post-hepatectomy liver failure and major complications according to Clavien-Dindo), and 90-day survival. Sixty-eight patients were included, of whom 60 (88%) had received chemotherapy. Twenty-nine (44%) patients had PSVD. Spleen stiffness measurements <21 kPa (negative predictive value 87%) and >40 kPa (positive predictive value 100%) could accurately diagnose PSVD. PSVD significantly increased the risk of post-hepatectomy liver failure (22% vs. 45%) and major complications (11% vs. 31%). Preoperative LSM was associated with postoperative morbidity. The cutoff LSMs <4.5 and >8 kPa predicted the risk of clinically significant post-hepatectomy liver failure (0%, 11%, and 33% in LSM <4.5, 4.5-8, and >8 kPa, respectively) and major complications (0%, 25%, 44% in LSM <4.5, 4.5-8, and >8 kPa, respectively). PSVD is very common among patients undergoing liver surgery for metastases, and it is associated with increased morbidity. LSM and spleen stiffness measurements can correctly identify patients with PSVD and those at risk of clinically relevant postoperative complications.
Collapse
Affiliation(s)
- Elton Dajti
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Matteo Serenari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Deborah Malvi
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gerti Dajti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Colecchia
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Caputo
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCSS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Amanda Vestito
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Azzaroli
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giovanni Barbara
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Matteo Ravaioli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Festi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Antonietta D'Errico
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Colecchia
- Department of Medical Specialities, University Hospital of Modena, University of Modena & Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Shivanna AT, Dash BS, Lu YJ, Lin WT, Chen JP. Magnetic lipid-poly(lactic-co-glycolic acid) nanoparticles conjugated with epidermal growth factor receptor antibody for dual-targeted delivery of CPT-11. Int J Pharm 2024; 667:124856. [PMID: 39461680 DOI: 10.1016/j.ijpharm.2024.124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
To entrap sparingly water-soluble drugs like CPT-11 (irinotecan), the poly(lactic-co-glycolic acid) (PLGA) nanoparticle (NP) is highly favored due to its low cytotoxicity and approval for clinical use. On the other hand, entrapping hydrophobic oleic acid-coated iron oxide magnetic nanoparticles (OMNP) in PLGA NP can provide a nanovehicle for magnetically targeted drug delivery. Our goal in this study is to develop a new dual-targeted magnetic lipid-polymer NP for the delivery of CPT-11. We first co-entrap OMNP and CPT-11 in self-assembled lipid-PLGA NP to prepare OLNP@CPT-11. The OLNP@CPT-11 surface was modified with an epidermal growth factor receptor (EGFR) antibody Cetuximab (CET), which can actively target the overexpressed EGFR on the U87 glioblastoma cell surface. The OLNP-CET@CPT-11 enables dual targeting through both external magnetic guidance and CET-mediated active targeting. The NP was characterized for physicochemical properties using various analytical techniques. In vitro study confirms ligand-receptor interaction results in enhanced endocytosis of OLNP-CET@CPT-11 by U87 cells, which offers increased cytotoxicity and elevated cell apoptosis rates. Furthermore, magnetic guidance of OLNP-CET@CPT-11 to U87 cells can induce cell death exclusively in the magnetically targeted zone. The dual-targeted strategy also provides the best therapeutic efficacy against subcutaneously implanted U87 tumors in nude mice with intravenously delivered OLNP-CET@CPT-11.
Collapse
Affiliation(s)
- Anilkumar T Shivanna
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
| | - Wei-Ting Lin
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
4
|
Kennedy AS, Brown DB, Fakih M, Jeyarajah R, Jones S, Liu D, Pinato DJ, Sangro B, Sharma NK, Sze DY, Van Cutsem E, Wasan HS. Multidisciplinary Delphi Consensus on Safety of Combining Transarterial Radioembolization with Yttrium-90 Microspheres with Systemic Anticancer Agents for the Treatment of Liver Malignancy. J Vasc Interv Radiol 2024; 35:1253-1267.e1. [PMID: 38885899 DOI: 10.1016/j.jvir.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE To provide guidance, via multidisciplinary consensus statements, on the safety interactions between systemic anticancer agents (such as radiosensitizing chemotherapy, immunotherapy, targeted therapy, and peptide receptor radionuclide therapy) and transarterial radioembolization (TARE) with yttrium-90 (90Y)-labeled microspheres in the treatment of primary and metastatic liver malignancies. MATERIALS AND METHODS A literature search identified 59 references that informed 26 statements on the safety of 90Y TARE combined with systemic therapies. Modified Delphi method was used to develop consensus on statements through online anonymous surveys of the 12 panel members representing the fields of interventional radiology, medical oncology, surgical oncology, hepatology, and pharmacy, focusing on hepatocellular carcinoma (HCC), metastatic colorectal cancer (mCRC), neuroendocrine tumors, metastatic breast cancer, and intrahepatic cholangiocarcinoma. RESULTS High-level evidence was limited. Level 1 data in patients with mCRC suggest that some radiosensitizing chemotherapies (eg, oxaliplatin) require temporary dose reduction when used concomitantly with 90Y TARE, and some targeted therapies (eg, vascular endothelial growth factor inhibitors and antiangiogenic tyrosine kinase inhibitors) should be avoided for at least 4 weeks before 90Y TARE. In patients with HCC, the feasibility of 90Y TARE and immunotherapy has been demonstrated with Level 4 evidence. Data are more limited for other primary and secondary liver malignancies, and consensus statements were driven by expert opinion (Level 5). CONCLUSIONS Given the absence of evidence-based guidelines on the safety of 90Y TARE in combination with systemic anticancer therapy, these consensus statements provide expert guidance on the potential risks when considering specific combinations.
Collapse
Affiliation(s)
- Andrew S Kennedy
- Radiation Oncology, Sarah Cannon Research Institute, Nashville, Tennessee.
| | - Daniel B Brown
- Interventional Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California
| | | | - Suzanne Jones
- Drug Development, Sarah Cannon Research Institute, Nashville, Tennessee
| | - David Liu
- Faculty of Medicine, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Bruno Sangro
- Liver Unit, Clinica Universidad de Navarra and CIBEREHD, Pamplona-Madrid, Spain
| | - Navesh K Sharma
- Department of Radiation Oncology, WellSpan Cancer Center, New York, Pennsylvania
| | - Daniel Y Sze
- Interventional Radiology, Stanford University, Palo Alto, California
| | - Eric Van Cutsem
- Digestive Oncology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Harpreet S Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
6
|
Jin K, Liao YC, Cheng TC, Li X, Lee WJ, Pi F, Jasinski D, Chen LC, Phelps MA, Ho YS, Guo P. In Vitro and In Vivo Evaluation of the Pathology and Safety Aspects of Three- and Four-Way Junction RNA Nanoparticles. Mol Pharm 2024; 21:718-728. [PMID: 38214504 PMCID: PMC10976369 DOI: 10.1021/acs.molpharmaceut.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
RNA therapeutics has advanced into the third milestone in pharmaceutical drug development, following chemical and protein therapeutics. RNA itself can serve as therapeutics, carriers, regulators, or substrates in drug development. Due to RNA's motile, dynamic, and deformable properties, RNA nanoparticles have demonstrated spontaneous targeting and accumulation in cancer vasculature and fast excretion through the kidney glomerulus to urine to prevent possible interactions with healthy organs. Furthermore, the negatively charged phosphate backbone of RNA results in general repulsion from negatively charged lipid cell membranes for further avoidance of vital organs. Thus, RNA nanoparticles can spontaneously enrich tumor vasculature and efficiently enter tumor cells via specific targeting, while those not entering the tumor tissue will clear from the body quickly. These favorable parameters have led to the expectation that RNA has low or little toxicity. RNA nanoparticles have been well characterized for their anticancer efficacy; however, little detail on RNA nanoparticle pathology and safety is known. Here, we report the in vitro and in vivo assessment of the pathology and safety aspects of different RNA nanoparticles including RNA three-way junction (3WJ) harboring 2'-F modified pyrimidine, folic acid, and Survivin siRNA, as well as the RNA four-way junction (4WJ) harboring 2'-F modified pyrimidine and 24 copies of SN38. Both animal models and patient serum were investigated. In vitro studies include hemolysis, platelet aggregation, complement activation, plasma coagulation, and interferon induction. In vivo studies include hematoxylin and eosin (H&E) staining, hematological and biochemical analysis as the serum profiling, and animal organ weight study. No significant toxicity, side effect, or immune responses were detected during the extensive safety evaluations of RNA nanoparticles. These results further complement previous cancer inhibition studies and demonstrate RNA nanoparticles as an effective and safe drug delivery vehicle for future clinical translations.
Collapse
Affiliation(s)
- Kai Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Xin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fengmei Pi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Daniel Jasinski
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Li-Ching Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, Ohio 43210, United States
- James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
White MJ, Jensen EH, Brauer DG. A Review of Resection and Surgical Ablation for Primary and Secondary Liver Cancers. Semin Intervent Radiol 2023; 40:536-543. [PMID: 38274223 PMCID: PMC10807965 DOI: 10.1055/s-0043-1777747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The surgical management of primary and secondary liver tumors is constantly evolving. Patient selection, particularly with regard to determining resectability, is vital to the success of programs directed toward invasive treatments of liver tumors. Particular attention should be paid toward determining whether patients are best served with surgical resection or ablative therapies. A multidisciplinary approach is necessary to provide optimal care to patients with liver malignancy.
Collapse
Affiliation(s)
- McKenzie J. White
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Eric H. Jensen
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - David G. Brauer
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Gui X, Zhao J, Ding L, Chai J, Lai H, Cai Y, Luo S, Zeng Y, Wu W, Chen H, Yao H, Wang Y. Assessing real-world safety concerns of Sacituzumab govitecan: a disproportionality analysis using spontaneous reports in the FDA adverse event reporting system. Front Oncol 2023; 13:1276976. [PMID: 37869095 PMCID: PMC10587566 DOI: 10.3389/fonc.2023.1276976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Aim The aim of this study was to identify potential safety concerns associated with Sacituzumab Govitecan (SG), an antibody-drug conjugate targeting trophoblastic cell-surface antigen-2, by analyzing real-world safety data from the largest publicly available worldwide pharmacovigilance database. Methods All data obtained from the FDA Adverse Event Reporting System (FAERS) database from the second quarter of 2020 to the fourth quarter of 2022 underwent disproportionality analysis and Bayesian analysis to detect and assess the adverse event signals of SG, considering statistical significance when the lower limit of the 95% CI >1, based on at least 3 reports. Results Total of 1072 cases were included. The main safety signals were blood and lymphatic system disorders [ROR(95CI)=7.23 (6.43-8.14)], gastrointestinal disorders [ROR(95CI)=2.01 (1.81-2.22)], and relative infection adverse events, such as neutropenic sepsis [ROR(95CI)=46.02 (27.15-77.99)] and neutropenic colitis [ROR(95CI)=188.02 (120.09-294.37)]. We also noted unexpected serious safety signals, including large intestine perforation [ROR(95CI)=10.77 (3.47-33.45)] and hepatic failure [ROR(95CI)=3.87 (1.45-10.31)], as well as a high signal for pneumonitis [ROR(95CI)=9.93 (5.75-17.12)]. Additionally, age sub-group analysis revealed that geriatric patients (>65 years old) were at an increased risk of neutropenic colitis [ROR(95CI)=282.05 (116.36-683.66)], neutropenic sepsis [ROR(95CI)=101.11 (41.83-244.43)], acute kidney injury [ROR(95CI)=3.29 (1.36-7.94)], and atrial fibrillation [ROR(95CI)=6.91 (2.86-16.69)]. Conclusion This study provides crucial real-world safety data on SG, complementing existing clinical trial information. Practitioners should identify contributing factors, employ monitoring and intervention strategies, and focus on adverse events like neutropenic sepsis, large intestine perforation, and hepatic failure. Further prospective studies are needed to address these safety concerns for a comprehensive understanding and effective management of associated risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Herui Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Wang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Shintani T, Imamura C, Ueyama-Toba Y, Inui J, Watanabe A, Mizuguchi H. Establishment of UGT1A1-knockout human iPS-derived hepatic organoids for UGT1A1-specific kinetics and toxicity evaluation. Mol Ther Methods Clin Dev 2023; 30:429-442. [PMID: 37663646 PMCID: PMC10471830 DOI: 10.1016/j.omtm.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Uridine diphosphate glucuronosyltransferases (UGTs) are highly expressed in the liver and are involved in the metabolism of many drugs. In particular, UGT1A1 has a genetic polymorphism that causes decreased activity, leading to drug-induced hepatotoxicity. Therefore, an in vitro evaluation system that accurately predicts the kinetics of drugs involving UGT1A1 is required. However, there is no such evaluation system because of the absence of the UGT1A1-selective inhibitor. Here, using human induced pluripotent stem (iPS) cells, genome editing technology, and organoid technology, we generated UGT1A1-knockout human iPS hepatocyte-derived liver organoids (UGT1A1-KO i-HOs) as a model for UGT1A1-specific kinetics and toxicity evaluation. i-HOs showed higher gene expression of many drug-metabolizing enzymes including UGT1A1 than human iPS cell-derived hepatocyte-like cells (iPS-HLCs), suggesting that hepatic organoid technology improves liver functions. Wild-type (WT) i-HOs showed similar levels of UGT1A1 activity to primary human (cryopreserved) hepatocytes, while UGT1A1-KO i-HOs completely lost the activity. Additionally, to evaluate whether this model can be used to predict drug-induced hepatotoxicity, UGT1A1-KO i-HOs were exposed to SN-38, the active metabolite of irinotecan, an anticancer drug, and acetaminophen and confirmed that these cells could predict UGT1A1-mediated toxicity. Thus, we succeeded in generating model cells that enable evaluation of UGT1A1-specific kinetics and toxicity.
Collapse
Affiliation(s)
- Tomohiro Shintani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Chiharu Imamura
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yukiko Ueyama-Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Akira Watanabe
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Cao Z, Liu Y, Chen S, Wang W, Yang Z, Chen Y, Jiao S, Huang W, Chen L, Sun L, Li Z, Zhang L. Discovery of novel carboxylesterase 2 inhibitors for the treatment of delayed diarrhea and ulcerative colitis. Biochem Pharmacol 2023; 215:115742. [PMID: 37567318 DOI: 10.1016/j.bcp.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human carboxylesterase 2 (hCES2) is an enzyme that metabolizes irinotecan to SN-38, a toxic metabolite considered a significant source of side effects (lethal delayed diarrhea). The hCES2 inhibitors could block the hydrolysis of irinotecan in the intestine and thus reduce the exposure of intestinal SN-38, which may alleviate irinotecan-associated diarrhea. However, existing hCES2 inhibitors (except loperamide) are not used in clinical applications due to lack of validity or acceptable safety. Therefore, developing more effective and safer drugs for treating delayed diarrhea is urgently needed. This study identified a lead compound 1 with a novel scaffold by high-throughput screening in our in-house library. After a comprehensive structure-activity relationship study, the optimal compound 24 was discovered as an efficient and highly selective hCES2 inhibitor (hCES2: IC50 = 6.72 μM; hCES1: IC50 > 100 μM). Further enzyme kinetics study indicated that compound 24 is a reversible inhibitor of hCES2 with competitive inhibition mode (Ki = 6.28 μM). The cell experiments showed that compound 24 could reduce the level of hCES2 in living cells (IC50 = 6.54 μM). The modeling study suggested that compound 24 fitted very well with the binding pocket of hCES2 by forming multiple interactions. Notably, compound 24 can effectively treat irinotecan-induced delayed diarrhea and DSS-induced ulcerative colitis, and its safety has also been verified in subtoxic studies. Based on the overall pharmacological and preliminary safety profiles, compound 24 is worthy of further evaluation as a novel agent for irinotecan-induced delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Han J, Liu J, Yu Z, Huang R, Zhao L, Xu Y, Chen M, He G, Song Q, Li W, Zhang C. Risk factors for irinotecan-induced liver injury: a retrospective multicentre cross-sectional study in China. BMJ Open 2023; 13:e069794. [PMID: 37349101 PMCID: PMC10314582 DOI: 10.1136/bmjopen-2022-069794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVES The hepatotoxicity of irinotecan has been widely implicated in the treatment of multiple solid tumours. However, there are few studies on the influencing factors of irinotecan-induced hepatotoxicity. Herein, we investigated the risk factors for irinotecan-induced liver injury among 421 patients receiving irinotecan-based regimens (IBRs). DESIGN Retrospective multi-centre cross-sectional study. SETTING This study surveyed four hospitals in China. PARTICIPANTS After excluding participants with missing variables, we retrospectively collected the demographic, clinical and therapeutic data of 421 patients who received IBRs in four hospitals between January 2020 and December 2021 and divided the patients into two groups: those without liver injury and those with liver injury. RESULTS The 421 enrolled patients were grouped (liver injury group: n=92; control group: n=329) according to their hepatic biochemical monitoring parameters. In our study, the multivariate logistic regression results showed that three to four cycles of chemotherapy (OR (95% CI): 2.179 (1.272 to 3.733); p=0.005) and liver metastasis (OR (95% CI): 1.748 (1.079 to 2.833); p=0.023) were independent risk factors for irinotecan-induced liver injury. The Cox proportional hazards model demonstrated that alcohol consumption history (OR (95% CI): 2.032 (1.183 to 3.491); p=0.010) and a cumulative dose of irinotecan ≥1000 mg (OR (95% CI): 0.362 (0.165 to 0.792); p=0.011) were significantly correlated with the onset time of irinotecan-induced liver injury. CONCLUSIONS These findings suggest that patients with liver metastasis or who received three to four cycles of chemotherapy should undergo rigorous liver function monitoring to prevent or reduce the incidence of irinotecan-induced liver injury. Moreover, patients with a history of alcohol consumption should also be closely monitored.
Collapse
Affiliation(s)
- Jun Han
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jianhua Liu
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Zaoqin Yu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Zhao
- Hubei Centre for Adverse Drug Reaction Monitoring, Wuhan, Hubei, China
| | - Yi Xu
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Min Chen
- Department of Pharmacy, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Guangzhao He
- Department of Pharmacy, Changzhou Tumor Hospital, Changzhou, Jiangsu, China
| | - Qiuyan Song
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Wei Li
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengliang Zhang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Shi C, Zhang Z, Xu R, Zhang Y, Wang Z. Contribution of HIF-1α/BNIP3-mediated autophagy to lipid accumulation during irinotecan-induced liver injury. Sci Rep 2023; 13:6528. [PMID: 37085612 PMCID: PMC10121580 DOI: 10.1038/s41598-023-33848-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
Irinotecan is a topoisomerase I inhibitor which has been widely used to combat several solid tumors, whereas irinotecan therapy can induce liver injury. Liver injury generally leads to tissue hypoxia, and hypoxia-inducible factor-1α (HIF-1α), a pivotal transcription factor, mediates adaptive pathophysiological responses to lower oxygen condition. Previous studies have reported a relationship between HIF-1α and autophagy, and autophagy impairment is a common characteristic in a variety of diseases. Here, irinotecan (50 mg/kg) was employed on mice, and HepG2 and L-02 cells were cultured with irinotecan (10, 20 and 40 μM). In vivo study, we found that irinotecan treatment increased final liver index, serum aminotransferase level and hepatic lipid accumulation. Impaired autophagic flux and activation of HIF-1α/BNIP3 pathway were also demonstrated in the liver of irinotecan-treated mice. Moreover, irinotecan treatment significantly deteriorated hepatic oxidative stress, evidenced by increased MDA and ROS contents, as well as decreased GSH-Px, SOD and CAT contents. Interestingly, protein levels of NLRP3, cleaved-caspase 1 and IL-1β were enhanced in the liver of mice injected with irinotecan. In vitro study, irinotecan-treated HepG2 and L-02 cells also showed impaired autophagic flux, while HIF-1α inhibition efficaciously removed the accumulated autophagosomes induced by irinotecan. Additionally, irinotecan treatment aggravated lipid accumulation in HepG2 and L-02 cells, and HIF-1α inhibition reversed the effect of irinotecan. Furthermore, HIF-1α inhibition weakened irinotecan-induced NLRP3 inflammasome activation in HepG2 cells. Taken together, our results suggest that irinotecan induces liver injury by orchestrating autophagy via HIF-1α/BNIP3 pathway, and HIF-1α inhibition could alleviate irinotecan-induced lipid accumulation in HepG2 and L-02 cells, which will provide a new clue and direction for the prevention of side effects of clinical chemotherapy drugs.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Yan Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, No.8, Shangsan Road, Fuzhou, 350007, China.
| |
Collapse
|
13
|
Quraish RU, Hirahata T, Quraish AU, ul Quraish S. An Overview: Genetic Tumor Markers for Early Detection and Current Gene Therapy Strategies. Cancer Inform 2023; 22:11769351221150772. [PMID: 36762284 PMCID: PMC9903029 DOI: 10.1177/11769351221150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
Genomic instability is considered a fundamental factor involved in any neoplastic disease. Consequently, the genetically unstable cells contribute to intratumoral genetic heterogeneity and phenotypic diversity of cancer. These genetic alterations can be detected by several diagnostic techniques of molecular biology and the detection of alteration in genomic integrity may serve as reliable genetic molecular markers for the early detection of cancer or cancer-related abnormal changes in the body cells. These genetic molecular markers can detect cancer earlier than any other method of cancer diagnosis, once a tumor is diagnosed, then replacement or therapeutic manipulation of these cancer-related abnormal genetic changes can be possible, which leads toward effective and target-specific cancer treatment and in many cases, personalized treatment of cancer could be performed without the adverse effects of chemotherapy and radiotherapy. In this review, we describe how these genetic molecular markers can be detected and the possible ways for the application of this gene diagnosis for gene therapy that can attack cancerous cells, directly or indirectly, which lead to overall improved management and quality of life for a cancer patient.
Collapse
Affiliation(s)
| | - Tetsuyuki Hirahata
- Tetsuyuki Hirahata, Hirahata Gene Therapy Laboratory, HIC Clinic #1105, Itocia Office Tower 11F, 2-7-1, Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan.
| | | | | |
Collapse
|
14
|
Entezari P, Toskich BB, Kim E, Padia S, Christopher D, Sher A, Thornburg B, Hohlastos ES, Salem R, Collins JD, Lewandowski RJ. Promoting Surgical Resection through Future Liver Remnant Hypertrophy. Radiographics 2022; 42:2166-2183. [PMID: 36206182 DOI: 10.1148/rg.220050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An inadequate future liver remnant (FLR) can preclude curative-intent surgical resection for patients with primary or secondary hepatic malignancies. For patients with normal baseline liver function and without risk factors, an FLR of 20% is needed to maintain postsurgical hepatic function. However, the FLR requirement is higher for patients who are exposed to systemic chemotherapy (FLR, >30%) or have cirrhosis (FLR, >40%). Interventional radiologic and surgical methods to achieve FLR hypertrophy are evolving, including portal vein ligation, portal vein embolization, radiation lobectomy, hepatic venous deprivation, and associating liver partition and portal vein ligation for staged hepatectomy. Each technique offers particular advantages and disadvantages. Knowledge of these procedures can help clinicians to choose the suitable technique for each patient. The authors review the techniques used to develop FLR hypertrophy, focusing on technical considerations, outcomes, and the advantages and disadvantages of each approach. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Pouya Entezari
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Beau B Toskich
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Edward Kim
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Siddharth Padia
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Derrick Christopher
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Alex Sher
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Bartley Thornburg
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Elias S Hohlastos
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Riad Salem
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Jeremy D Collins
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| | - Robert J Lewandowski
- From the Department of Radiology, Section of Interventional Radiology (P.E., B.T., E.S.H., R.S., R.J.L.), and Department of Surgery, Division of Transplant Surgery (D.C.), Northwestern University, 676 N Saint Clair St, Chicago, IL 60611-2927; Department of Radiology, Section of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Fla (B.B.T.); Department of Radiology, Section of Interventional Radiology, Mount Sinai University Hospitals, New York, NY (E.K., A.S.); Department of Radiology, Section of Interventional Radiology, University of California-Los Angeles, Los Angeles, Calif (S.P.); and Department of Radiology, Mayo Clinic Rochester, Rochester, Minn (J.D.C.)
| |
Collapse
|
15
|
Li J, Chen B, Wen-Qi X, Jia W, Zhang WX, Bian XL. Drug-Drug Interactions and Disease Status Are Associated with Irinotecan-induced Hepatotoxicity: A Cross-Sectional Study in Shanghai. J Clin Pharmacol 2022; 62:1160-1169. [PMID: 35396702 DOI: 10.1002/jcph.2059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 11/05/2022]
Abstract
Irinotecan-induced hepatotoxicity can cause severe clinical complications in patients; however, the underlying mechanism and factors affecting hepatotoxicity have rarely been investigated. In this cross-sectional study, we screened all clinical, demographic, medication and genetic variables among 126 patients receiving irinotecan and explored potential associations with the incidence and time to onset of irinotecan-induced hepatotoxicity. Approximately 38.9% of the patients suffered from hepatotoxicity after irinotecan administration. The presence of cardiovascular diseases (CVDs) increases the incidence of hepatotoxicity approximately 2.9-fold and doubles the hazard of time to hepatotoxicity. Patients with liver metastasis had a more than 4-fold higher risk of hepatotoxicity and a 3.5-fold increased hazard of time to hepatotoxicity compared to those without liver metastasis. Patients who took CYP3A inducers had a 4.4-fold increased incidence of hepatotoxicity, and furthermore, concomitant use of platinum-based antineoplastics revealed 4.2 times the hazard of time to hepatotoxicity compared to those receiving antimetabolites. The cumulative dose of irinotecan (5-9 cycles) increased hepatotoxicity by 8.5 times. However, the genotypes and phenotypes of UGT1A1*28/*6 failed to be predictive factors of hepatotoxicity. The findings of this study suggest that irinotecan-induced hepatotoxicity is not directly associated with genetic variables but is mostly related to concomitant use of CYP3A inducers and platinum, as well as the presence of liver metastasis and CVD. Thus, close monitoring of liver function is recommended, especially in patients with liver impairment or using CYP3A inducers and platinum antineoplastic drugs, which may be the best way to prevent hepatotoxicity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bing Chen
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xi Wen-Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wan Jia
- Department of Pharmacy, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Wuxi, People's Republic of China
| | - Wei-Xia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Lan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|