1
|
Ruan Y, Liu X, Jin Y, Zhao M, Zhang X, Cheng X, Wang Y, Cao S, Yan M, Cai J, Li M, Gao B. Personalized predictions of neoadjuvant chemotherapy response in breast cancer using machine learning and full-field digital mammography radiomics. Front Med (Lausanne) 2025; 12:1582560. [PMID: 40313551 PMCID: PMC12043669 DOI: 10.3389/fmed.2025.1582560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Objective This study aimed to develop a comprehensive nomogram model by integrating clinical pathological and full-field digital mammography (FFDM) radiomic features to predict the efficacy of neoadjuvant chemotherapy (NAC) in breast cancer patients, thereby providing personalized treatment recommendations. Methods A retrospective analysis was conducted on the clinical and imaging data of 227 breast cancer patients from 2016 to 2024 at the Second Affiliated Hospital of Harbin Medical University. The patients were divided into a training set (n = 159) and a test set (n = 68) with a 7:3 ratio. The region of interest (ROI) was manually segmented on FFDM images, and features were extracted and gradually selected. The rad-score was calculated for each patient. Five machine learning classifiers were used to build radiomics models, and the optimal model was selected. Univariate and multivariate regression analyses were performed to identify independent risk factors for predicting the efficacy of NAC in breast cancer patients. A nomogram prediction model was further developed by combining the independent risk factors and rad-score, and probability-based stratification was applied. An independent cohort was collected from an external hospital to evaluate the performance of the model. Results The radiomics model based on support vector machine (SVM) demonstrated the best predictive performance. FFDM tumor density and HER-2 status were identified as independent risk factors for achieving pathologic complete response (PCR) after NAC (p < 0.05). The nomogram prediction model, developed by combining the independent risk factors and rad-score, outperformed other models, with areas under the curve (AUC) of 0.91 and 0.85 for the training and test sets, respectively. Based on the optimal cutoff points of 103.42 from the nomogram model, patients were classified into high-probability and low-probability groups. When the nomogram model was applied to an independent cohort of 47 patients, only four patients had incorrect diagnoses. The nomogram model demonstrated stable and accurate predictive performance. Conclusion The nomogram prediction model, developed by integrating clinical pathological and radiomic features, demonstrated significant performance in predicting the efficacy of NAC in breast cancer, providing valuable reference for clinical personalized prediction planning.
Collapse
Affiliation(s)
- Ye Ruan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingyuan Liu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yantong Jin
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingming Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoying Cheng
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siwei Cao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menglu Yan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianing Cai
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengru Li
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Miao L, Li Z, Gao J. A multi-model machine learning framework for breast cancer risk stratification using clinical and imaging data. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2025; 33:360-375. [PMID: 39973793 DOI: 10.1177/08953996241308175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
PurposeThis study presents a comprehensive machine learning framework for assessing breast cancer malignancy by integrating clinical features with imaging features derived from deep learning.MethodsThe dataset included 1668 patients with documented breast lesions, incorporating clinical data (e.g., age, BI-RADS category, lesion size, margins, and calcifications) alongside mammographic images processed using four CNN architectures: EfficientNet, ResNet, DenseNet, and InceptionNet. Three predictive configurations were developed: an imaging-only model, a hybrid model combining imaging and clinical data, and a stacking-based ensemble model that aggregates both data types to enhance predictive accuracy. Twelve feature selection techniques, including ReliefF and Fisher Score, were applied to identify key predictive features. Model performance was evaluated using accuracy and AUC, with 5-fold cross-valida tion and hyperparameter tuning to ensure robustness.ResultsThe imaging-only models demonstrated strong predictive performance, with EfficientNet achieving an AUC of 0.76. The hybrid model combining imaging and clinical data reached the highest accuracy of 83% and an AUC of 0.87, underscoring the benefits of data integration. The stacking-based ensemble model further optimized accuracy, reaching a peak AUC of 0.94, demonstrating its potential as a reliable tool for malignancy risk assessment.ConclusionThis study highlights the importance of integrating clinical and deep imaging features for breast cancer risk stratification, with the stacking-based model.
Collapse
Affiliation(s)
- Lu Miao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Zidong Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Dong F, Li J, Wang J, Yang X. Diagnostic performance of DCE-MRI radiomics in predicting axillary lymph node metastasis in breast cancer patients: A meta-analysis. PLoS One 2024; 19:e0314653. [PMID: 39625963 PMCID: PMC11614294 DOI: 10.1371/journal.pone.0314653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Radiomics offers a novel strategy for the differential diagnosis, prognosis evaluation, and prediction of treatment responses in breast cancer. Studies have explored radiomic signatures from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting axillary lymph node metastasis (ALNM) and sentinel lymph node metastasis (SLNM), but the diagnostic accuracy varies widely. To evaluate this performance, we conducted a meta-analysis performing a comprehensive literature search across databases including PubMed, EMBASE, SCOPUS, Web of Science (WOS), Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Data, and the Chinese BioMedical Literature Database (CBM) until March 31, 2024. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the receiver operating characteristic curve (AUC) were calculated. Twenty-four eligible studies encompassing 5588 breast cancer patients were included in the meta-analysis. The meta-analysis yielded a pooled sensitivity of 0.81 (95% confidence interval [CI]: 0.77-0.84), specificity of 0.85 (95%CI: 0.81-0.87), PLR of 5.24 (95%CI: 4.32-6.34), NLR of 0.23 (95%CI: 0.19-0.27), DOR of 23.16 (95%CI: 17.20-31.19), and AUC of 0.90 (95%CI: 0.87-0.92), indicating good diagnostic performance. Significant heterogeneity was observed in analyses of sensitivity (I2 = 74.64%) and specificity (I2 = 83.18%). Spearman's correlation coefficient suggested no significant threshold effect (P = 0.538). Meta-regression and subgroup analyses identified several potential heterogeneity sources, including data source, integration of clinical factors and peritumor features, MRI equipment, magnetic field strength, lesion segmentation, and modeling methods. In conclusion, DCE-MRI radiomic models exhibit good diagnostic performance in predicting ALNM and SLNM in breast cancer. This non-invasive and effective tool holds potential for the preoperative diagnosis of lymph node metastasis in breast cancer patients.
Collapse
Affiliation(s)
- Fei Dong
- Department of Medical Imaging, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi Province, China
| | - Jie Li
- Department of Anesthesiology, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi Province, China
| | - Junbo Wang
- Department of Medical Imaging, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi Province, China
| | - Xiaohui Yang
- Department of Medical Imaging, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi Province, China
| |
Collapse
|
4
|
Zhang C, Zhong M, Liang Z, Zhou J, Wang K, Bu J. MRI-based radiomic and machine learning for prediction of lymphovascular invasion status in breast cancer. BMC Med Imaging 2024; 24:322. [PMID: 39604872 PMCID: PMC11603622 DOI: 10.1186/s12880-024-01501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE Lymphovascular invasion (LVI) is critical for the effective treatment and prognosis of breast cancer (BC). This study aimed to investigate the value of eight machine learning models based on MRI radiomic features for the preoperative prediction of LVI status in BC. METHODS A total of 454 patients with BC with known LVI status who underwent breast MRI were enrolled and randomly assigned to the training and validation sets at a ratio of 7:3. Radiomic features were extracted from T2WI and dynamic contrast-enhanced (DCE) of MRI sequences, the optimal feature filter and LASSO algorithm were used to obtain the optimal features, and eight machine learning algorithms, including LASSO, logistic regression, random forest, k-nearest neighbor (KNN), support vector machine, gradient boosting decision tree, extreme gradient boosting, and light gradient boosting machine, were used to construct models for predicating LVI status in BC. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used to evaluate the performance of the models. RESULTS Eighteen radiomic features were retained to construct the radiomic signature. Among the eight machine learning algorithms, the KNN model demonstrated superior performance to the other models in assessing the LVI status of patients with BC, with an accuracy of 0.696 and 0.642 in training and validation sets, respectively. CONCLUSION The eight machine learning models based on MRI radiomics serve as reliable indicators for identifying LVI status, and the KNN model demonstrated superior performance.This model offers substantial clinical utility, facilitating timely intervention in invasive BC and ultimately aiming to enhance patient survival rates.
Collapse
Affiliation(s)
- Cici Zhang
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, GuangDong, 510220, China
| | - Minzhi Zhong
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, GuangDong, 510220, China
| | - Zhiping Liang
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, GuangDong, 510220, China
| | - Jing Zhou
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, GuangDong, 510220, China
| | - Kejian Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250300, China.
| | - Jun Bu
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, GuangDong, 510220, China.
| |
Collapse
|
5
|
Ferro A, Bottosso M, Dieci MV, Scagliori E, Miglietta F, Aldegheri V, Bonanno L, Caumo F, Guarneri V, Griguolo G, Pasello G. Clinical applications of radiomics and deep learning in breast and lung cancer: A narrative literature review on current evidence and future perspectives. Crit Rev Oncol Hematol 2024; 203:104479. [PMID: 39151838 DOI: 10.1016/j.critrevonc.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024] Open
Abstract
Radiomics, analysing quantitative features from medical imaging, has rapidly become an emerging field in translational oncology. Radiomics has been investigated in several neoplastic malignancies as it might allow for a non-invasive tumour characterization and for the identification of predictive and prognostic biomarkers. Over the last few years, evidence has been accumulating regarding potential clinical applications of machine learning in many crucial moments of cancer patients' history. However, the incorporation of radiomics in clinical decision-making process is still limited by low data reproducibility and study variability. Moreover, the need for prospective validations and standardizations is emerging. In this narrative review, we summarize current evidence regarding radiomic applications in high-incidence cancers (breast and lung) for screening, diagnosis, staging, treatment choice, response, and clinical outcome evaluation. We also discuss pro and cons of the radiomic approach, suggesting possible solutions to critical issues which might invalidate radiomics studies and propose future perspectives.
Collapse
Affiliation(s)
- Alessandra Ferro
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Michele Bottosso
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Maria Vittoria Dieci
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy.
| | - Elena Scagliori
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Federica Miglietta
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Vittoria Aldegheri
- Radiology Unit, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Laura Bonanno
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Francesca Caumo
- Unit of Breast Radiology, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy
| | - Valentina Guarneri
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Gaia Griguolo
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| | - Giulia Pasello
- Division of Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, via Gattamelata 64, Padua 35128, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova 35128, Italy
| |
Collapse
|
6
|
Xiong S, Fu Z, Deng Z, Li S, Zhan X, Zheng F, Yang H, Liu X, Xu S, Liu H, Fan B, Dong W, Song Y, Fu B. Machine learning-based CT radiomics enhances bladder cancer staging predictions: A comparative study of clinical, radiomics, and combined models. Med Phys 2024; 51:5965-5977. [PMID: 38977273 DOI: 10.1002/mp.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Predicting the accurate preoperative staging of bladder cancer (BLCA), which markedly affects treatment decisions and patient outcomes, using traditional clinical parameters is challenging. Nevertheless, emerging studies in radiomics, especially machine learning-based computed tomography (CT) image-based radiomics, hold promise in improving stage prediction accuracy in various tumors. However, the comparative performance and clinical utility of models for BLCA are under investigation. PURPOSE We aimed to investigate the application value of machine learning-based CT radiomics in preoperative staging prediction by comparing the performance of clinical, radiomics, and clinical-radiomics combined models. METHODS A retrospective cohort of 105 patients with initial BLCA was randomized into training (70%) and testing (30%) cohorts. Radiomics features were extracted from CT images using the optimal feature filter, followed by the application of the least absolute shrinkage and selection operator algorithm for optimum feature selection. Furthermore, machine learning algorithms were used to establish a radiomics model within the training cohort. Independent risk factors for muscle-invasive BLCA (MIBC) obtained by multivariate logistic regression (LR) analysis were separately used to construct a clinical model. For a clinical-radiomics fusion model, radiomics features were combined with clinical parameters. Performance was evaluated based on receiver operating characteristic curves, calibration curves, decision curve analysis (DCA), and standard performance metrics. RESULTS Patients exhibited a significantly higher age (p = 0.029), larger tumor size (p = 0.01), and an increased neutrophil-to-lymphocyte ratio (NLR; p = 0.045) in the MIBC group than in the NMIBC group. LR analysis revealed age (p = 0.026), tumor size (p = 0.007), and NLR (p = 0.019) as significant predictors for constructing the clinical model. In the testing cohort, the radiomics model, which used an Support Vector Machine classifier, achieved the highest area under the curve (AUC) value of 0.857. The clinical-radiomics model outperformed the remaining two models, with AUC values of 0.958 and 0.893 in the training and testing cohorts, respectively. DeLong's test indicated significant differences between the three models. Calibration curves showed good agreement, and DCA confirmed the superior clinical utility of the clinical-radiomics model. CONCLUSIONS Machine learning-based CT radiomics combined with clinical parameters was a promising approach in staging BLCA accurately, which outperformed the individual models. Integrating radiomics features with clinical information holds the potential to improve personalized treatment planning and patient outcomes in BLCA.
Collapse
Affiliation(s)
- Situ Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| | - Zhehong Fu
- Department of Computer Science, Columbia University, New York, New York, USA
| | - Zhikang Deng
- Medical College of Nanchang University, Nanchang University, Nanchang, China
- Department of Nuclear Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| | - Xiangpeng Zhan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| | - Fuchun Zheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| | - Hailang Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| | - Hao Liu
- R&D, Yizhun Medical AI, Beijing, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Wentao Dong
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yanping Song
- Department of Quality Control, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Nanchang, China
| |
Collapse
|
7
|
Chen X, Li M, Su D. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach. Medicine (Baltimore) 2024; 103:e39343. [PMID: 39151526 PMCID: PMC11332746 DOI: 10.1097/md.0000000000039343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
To develop machine learning models based on preoperative dynamic enhanced magnetic resonance imaging (DCE-MRI) radiomics and to explore their potential prognostic value in the differential diagnosis of human epidermal growth factor receptor 2 (HER2)-low from HER2-positive breast cancer (BC). A total of 233 patients with pathologically confirmed invasive breast cancer admitted to our hospital between January 2018 and December 2022 were included in this retrospective analysis. Of these, 103 cases were diagnosed as HER2-positive and 130 cases were HER2 low-expression BC. The Synthetic Minority Oversampling Technique is employed to address the class imbalance problem. Patients were randomly split into a training set (163 cases) and a validation set (70 cases) in a 7:3 ratio. Radiomics features from DCE-MRI second-phase imaging were extracted. Z-score normalization was used to standardize the radiomics features, and Pearson's correlation coefficient and recursive feature elimination were used to explore the significant features. Prediction models were constructed using 6 machine learning algorithms: logistic regression, random forest, support vector machine, AdaBoost, decision tree, and auto-encoder. Receiver operating characteristic curves were constructed, and predictive models were evaluated according to the area under the curve (AUC), accuracy, sensitivity, and specificity. In the training set, the AUC, accuracy, sensitivity, and specificity of all models were 1.000. However, in the validation set, the auto-encoder model's AUC, accuracy, sensitivity, and specificity were 0.994, 0.976, 0.972, and 0.978, respectively. The remaining models' AUC, accuracy, sensitivity, and specificity were 1.000. The DeLong test showed no statistically significant differences between the machine learning models in the training and validation sets (Z = 0, P = 1). Our study investigated the feasibility of using DCE-MRI-based radiomics features to predict HER2-low BC. Certain radiomics features showed associations with HER2-low BC and may have predictive value. Machine learning prediction models developed using these radiomics features could be beneficial for distinguishing between HER2-low and HER2-positive BC. These noninvasive preoperative models have the potential to assist in clinical decision-making for HER2-low breast cancer, thereby advancing personalized clinical precision.
Collapse
Affiliation(s)
- Xianfei Chen
- Department of Radiology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Minghao Li
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Danke Su
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
8
|
Chen X, Li M, Liang X, Su D. Performance evaluation of ML models for preoperative prediction of HER2-low BC based on CE-CBBCT radiomic features: A prospective study. Medicine (Baltimore) 2024; 103:e38513. [PMID: 38875420 PMCID: PMC11175967 DOI: 10.1097/md.0000000000038513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
To explore the value of machine learning (ML) models based on contrast-enhanced cone-beam breast computed tomography (CE-CBBCT) radiomics features for the preoperative prediction of human epidermal growth factor receptor 2 (HER2)-low expression breast cancer (BC). Fifty-six patients with HER2-negative invasive BC who underwent preoperative CE-CBBCT were prospectively analyzed. Patients were randomly divided into training and validation cohorts at approximately 7:3. A total of 1046 quantitative radiomic features were extracted from CE-CBBCT images and normalized using z-scores. The Pearson correlation coefficient and recursive feature elimination were used to identify the optimal features. Six ML models were constructed based on the selected features: linear discriminant analysis (LDA), random forest (RF), support vector machine (SVM), logistic regression (LR), AdaBoost (AB), and decision tree (DT). To evaluate the performance of these models, receiver operating characteristic curves and area under the curve (AUC) were used. Seven features were selected as the optimal features for constructing the ML models. In the training cohort, the AUC values for SVM, LDA, RF, LR, AB, and DT were 0.984, 0.981, 1.000, 0.970, 1.000, and 1.000, respectively. In the validation cohort, the AUC values for the SVM, LDA, RF, LR, AB, and DT were 0.859, 0.880, 0.781, 0.880, 0.750, and 0.713, respectively. Among all ML models, the LDA and LR models demonstrated the best performance. The DeLong test showed that there were no significant differences among the receiver operating characteristic curves in all ML models in the training cohort (P > .05); however, in the validation cohort, the DeLong test showed that the differences between the AUCs of LDA and RF, AB, and DT were statistically significant (P = .037, .003, .046). The AUCs of LR and RF, AB, and DT were statistically significant (P = .023, .005, .030). Nevertheless, no statistically significant differences were observed when compared to the other ML models. ML models based on CE-CBBCT radiomics features achieved excellent performance in the preoperative prediction of HER2-low BC and could potentially serve as an effective tool to assist in precise and personalized targeted therapy.
Collapse
Affiliation(s)
- Xianfei Chen
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Minghao Li
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Xueli Liang
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Danke Su
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
9
|
Yang H, Wang W, Cheng Z, Zheng T, Cheng C, Cheng M, Wang Z. Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI. Technol Cancer Res Treat 2024; 23:15330338241288751. [PMID: 39431304 PMCID: PMC11504335 DOI: 10.1177/15330338241288751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
PURPOSE Our study aimed to investigate the potential of radiomics with DCE-MRI for predicting Ki-67 expression in invasive ductal breast cancer. METHOD We conducted a retrospective study including 223 patients diagnosed with invasive ductal breast cancer. Radiomics features were extracted from DCE-MRI using 3D-Slicer software. Two Ki-67 expression cutoff values (20% and 29%) were examined. Patients were divided into training (70%) and test (30%) sets. The Elastic Net method selected relevant features, and five machine-learning models were established. Radiomics models were created from intratumoral, peritumoral, and combined regions. Performance was assessed using ROC curves, accuracy, sensitivity, and specificity. RESULT For a Ki-67 cutoff value of 20%, the combined model exhibited the highest performance, with area under the curve (AUC) values of 0.838 (95% confidence interval (CI): 0.774-0.897) for the training set and 0.863 (95% CI: 0.764-0.949) for the test set. The AUC values for the tumor model were 0.816 (95% CI: 0.745-0.880) and 0.830 (95% CI: 0.724-0.916), and for the peritumor model were 0.790 (95% CI: 0.711-0.857) and 0.808 (95% CI: 0.682-0.910). When the Ki-67 cutoff value was set at 29%, the combined model also demonstrated superior predictive ability in both training set (AUC: 0.796; 95% CI: 0.724-0.862) and the test set (AUC: 0.823; 95% CI: 0.723-0.911). The AUC values for the tumor model were 0.785 (95% CI: 0.708-0.861) and 0.784 (95% CI: 0.663-0.882), and for the peritumor model were 0.773 (95% CI: 0.690-0.844) and 0.729 (95% CI: 0.603-0.847). CONCLUSION Radiomics with DCE-MRI can predict Ki-67 expression in invasive ductal breast cancer. Integrating radiomics features from intratumoral and peritumoral regions yields a dependable prognostic model, facilitating pre-surgical detection and treatment decisions. This holds potential for commercial diagnostic tools.
Collapse
Affiliation(s)
- Huan Yang
- Department of Emergency, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wenxi Wang
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhiyong Cheng
- Department of Education, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Cheng Cheng
- Department of Emergency, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Mengyu Cheng
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
10
|
Chen Y, Wang L, Dong X, Luo R, Ge Y, Liu H, Zhang Y, Wang D. Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer. J Digit Imaging 2023; 36:1323-1331. [PMID: 36973631 PMCID: PMC10042410 DOI: 10.1007/s10278-023-00818-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
The objective of this study is to develop a radiomic signature constructed from deep learning features and a nomogram for prediction of axillary lymph node metastasis (ALNM) in breast cancer patients. Preoperative magnetic resonance imaging data from 479 breast cancer patients with 488 lesions were studied. The included patients were divided into two cohorts by time (training/testing cohort, n = 366/122). Deep learning features were extracted from diffusion-weighted imaging-quantitatively measured apparent diffusion coefficient (DWI-ADC) imaging and dynamic contrast-enhanced MRI (DCE-MRI) by a pretrained neural network of DenseNet121. After the selection of both radiomic and clinicopathological features, deep learning signature and a nomogram were built for independent validation. Twenty-three deep learning features were automatically selected in the training cohort to establish the deep learning signature of ALNM. Three clinicopathological factors, including LN palpability (odds ratio (OR) = 6.04; 95% confidence interval (CI) = 3.06-12.54, P = 0.004), tumor size in MRI (OR = 1.45, 95% CI = 1.18-1.80, P = 0.104), and Ki-67 (OR = 1.01; 95% CI = 1.00-1.02, P = 0.099), were selected and combined with radiomic signature to build a combined nomogram. The nomogram showed excellent predictive ability for ALNM (AUC 0.80 and 0.71 in training and testing cohorts, respectively). The sensitivity, specificity, and accuracy were 65%, 80%, and 75%, respectively, in the testing cohort. MRI-based deep learning radiomics in patients with breast cancer could be used to predict ALNM, providing a noninvasive approach to structuring the treatment strategy.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Lijun Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Ran Luo
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Yaqiong Ge
- Department of Medicine, GE Healthcare, No. 1, Huatuo Road, 210000, Shanghai, China
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Yuzhen Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| |
Collapse
|
11
|
Xiong S, Dong W, Deng Z, Jiang M, Li S, Hu B, Liu X, Chen L, Xu S, Fan B, Fu B. Value of the application of computed tomography-based radiomics for preoperative prediction of unfavorable pathology in initial bladder cancer. Cancer Med 2023; 12:15868-15880. [PMID: 37434436 PMCID: PMC10469743 DOI: 10.1002/cam4.6225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
OBJECTIVES To construct and validate unfavorable pathology (UFP) prediction models for patients with the first diagnosis of bladder cancer (initial BLCA) and to compare the comprehensive predictive performance of these models. MATERIALS AND METHODS A total of 105 patients with initial BLCA were included and randomly enrolled into the training and testing cohorts in a 7:3 ratio. The clinical model was constructed using independent UFP-risk factors determined by multivariate logistic regression (LR) analysis in the training cohort. Radiomics features were extracted from manually segmented regions of interest in computed tomography (CT) images. The optimal CT-based radiomics features to predict UFP were determined by the optimal feature filter and the least absolute shrinkage and selection operator algorithm. The radiomics model consist with the optimal features was constructed by the best of the six machine learning filters. The clinic-radiomics model combined the clinical and radiomics models via LR. The area under the curve (AUC), accuracy, sensitivity, specificity, positive and negative predictive value, calibration curve and decision curve analysis were used to evaluate the predictive performance of the models. RESULTS Patients in the UFP group had a significantly older age (69.61 vs. 63.93 years, p = 0.034), lager tumor size (45.7% vs. 11.1%, p = 0.002) and higher neutrophil to lymphocyte ratio (NLR; 2.76 vs. 2.33, p = 0.017) than favorable pathologic group in the training cohort. Tumor size (OR, 6.02; 95% CI, 1.50-24.10; p = 0.011) and NLR (OR, 1.50; 95% CI, 1.05-2.16; p = 0.026) were identified as independent predictive factors for UFP, and the clinical model was constructed using these factors. The LR classifier with the best AUC (0.817, the testing cohorts) was used to construct the radiomics model based on the optimal radiomics features. Finally, the clinic-radiomics model was developed by combining the clinical and radiomics models using LR. After comparison, the clinic-radiomics model had the best performance in comprehensive predictive efficacy (accuracy = 0.750, AUC = 0.817, the testing cohorts) and clinical net benefit among UFP-prediction models, while the clinical model (accuracy = 0.625, AUC = 0.742, the testing cohorts) was the worst. CONCLUSION Our study demonstrates that the clinic-radiomics model exhibits the best predictive efficacy and clinical net benefit for predicting UFP in initial BLCA compared with the clinical and radiomics model. The integration of radiomics features significantly improves the comprehensive performance of the clinical model.
Collapse
Affiliation(s)
- Situ Xiong
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| | - Wentao Dong
- Department of RadiologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Zhikang Deng
- Department of Nuclear Medicine, Jiangxi Provincial People's HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Ming Jiang
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| | - Sheng Li
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| | - Bing Hu
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| | - Xiaoqiang Liu
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| | - Luyao Chen
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| | - Songhui Xu
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| | - Bing Fan
- Department of RadiologyJiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchangChina
| | - Bin Fu
- Department of UrologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Institute of UrologyNanchangChina
| |
Collapse
|
12
|
Zhang J, Cao G, Pang H, Li J, Yao X. Development and validation of radiomics machine learning model based on contrast-enhanced computed tomography to predict axillary lymph node metastasis in breast cancer. BIOMOLECULES & BIOMEDICINE 2023; 23:317-326. [PMID: 36226600 PMCID: PMC10113944 DOI: 10.17305/bjbms.2022.7853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022]
Abstract
Preoperative identification of axillary lymph node metastasis can play an important role in treatment selection strategy and prognosis evaluation. This study aimed to establish a clinical nomogram based on lymph node images to predict lymph node metastasis in breast cancer patients. A total of 193 patients with non-specific invasive breast cancer were divided into training (n = 135) and validation set (n = 58). Radiomics features were extracted from lymph node images instead of tumor region, and the least absolute shrinkage and selection operator logistic algorithm was used to select the extracted features and generate radiomics score. Then, the important clinical factors and radiomics score were integrated into a nomogram. A receiver operating characteristic curve was used to evaluate the nomogram, and the clinical benefit of using the nomogram was evaluated by decision curve analysis. We found that clinical N stage and radiomics score were independent clinical predictors. Besides, the nomogram accurately predicted axillary lymph node metastasis, yielding an area under the receiver operating characteristic curve of 0.95 (95% confidence interval 0.93-0.98) in the validation set, indicating satisfactory calibration. Decision curve analysis confirmed that the nomogram had higher clinical utility than clinical N stage or radiomics score alone. Overall, the nomogram based on radiomics features and clinical factors can help radiologists to predict axillary lymph node metastasis preoperatively and provide valuable information for individual treatment.
Collapse
Affiliation(s)
- Jieqiu Zhang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Gaofei Cao
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jin Li
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Xiaopeng Yao
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Liu M, Bian J. Radiomics signatures based on contrast-enhanced CT for preoperative prediction of the Ki-67 proliferation state in gastrointestinal stromal tumors. Jpn J Radiol 2023:10.1007/s11604-023-01391-5. [PMID: 36652141 DOI: 10.1007/s11604-023-01391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE This study aimed to evaluate the Ki-67 proliferation state in patients with gastrointestinal stromal tumors (GISTs) using radiomics prediction signatures based on contrast-enhanced computed tomography (CE-CT). MATERIALS AND METHODS This single-center, retrospective study involved 103 patients (48 men and 55 women, mean age 61.1 ± 10.6 years) who had pathologically confirmed GISTs after curative resection, including 63 with low Ki-67 proliferation level (Ki-67 labeling index ≤ 6%) and 40 with high Ki-67 proliferation level (Ki-67 labeling index > 6%). Radiomics features of the delineated lesions were preoperatively extracted from three-phase CE-CT images, including the arterial, venous, and delayed phases. The most relevant features were selected to construct the radiomics signatures using a logistic regression algorithm. Significant demographic characteristics and semantic features on CT were selected to develop a nomogram along with the optimal radiomics feature. We calculated the sensitivity, specificity, accuracy, F1 score, and area under the receiver operating characteristic (ROC) curve to evaluate the predictive performance of radiomics signatures. RESULTS Ten quantitative radiomics features (two first-order and eight texture features) were selected to construct radiomics signatures. The radiomics signature based on the three-phase CE-CT images showed better predictive performance than that based on the single-phase CE-CT images, with an area under the curve (AUC) of 0.83 (95% CI 0.73-0.92) and F1 score of 82% in the training dataset and an AUC of 0.80 (95% CI 0.63-0.95) and F1 score of 75% in the testing dataset. The nomogram showed good calibration. CONCLUSION Radiomics signatures using CE-CT images are generalizable and could be used in clinical practice to determine the proliferation state of Ki-67 in GISTs.
Collapse
Affiliation(s)
- Meijun Liu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning Province, China
| | - Jie Bian
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No.467 Zhongshan Road, Shahekou District, Dalian, 116027, Liaoning Province, China.
| |
Collapse
|
14
|
Gong X, Guo Y, Zhu T, Peng X, Xing D, Zhang M. Diagnostic performance of radiomics in predicting axillary lymph node metastasis in breast cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1046005. [PMID: 36518318 PMCID: PMC9742555 DOI: 10.3389/fonc.2022.1046005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND This study aimed to perform a meta-analysis to evaluate the diagnostic performance of radiomics in predicting axillary lymph node metastasis (ALNM) and sentinel lymph node metastasis (SLNM) in breast cancer. MATERIALS AND METHODS Multiple electronic databases were systematically searched to identify relevant studies published before April 29, 2022: PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Data. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The overall diagnostic odds ratio (DOR), sensitivity, specificity, and area under the curve (AUC) were calculated to evaluate the diagnostic performance of radiomic features for lymph node metastasis (LNM) in patients with breast cancer. Spearman's correlation coefficient was determined to assess the threshold effect, and meta-regression and subgroup analyses were performed to explore the possible causes of heterogeneity. RESULTS A total of 30 studies with 5611 patients were included in the meta-analysis. Pooled estimates suggesting overall diagnostic accuracy of radiomics in detecting LNM were determined: DOR, 23 (95% CI, 16-33); sensitivity, 0.86 (95% CI, 0.82-0.88); specificity, 0.79 (95% CI, 0.73-0.84); and AUC, 0.90 (95% CI, 0.87-0.92). The meta-analysis showed significant heterogeneity between sensitivity and specificity across the included studies, with no evidence for a threshold effect. Meta-regression and subgroup analyses showed that combined clinical factors, modeling method, region, and imaging modality (magnetic resonance imaging [MRI], ultrasound, computed tomography [CT], and X-ray mammography [MMG]) contributed to the heterogeneity in the sensitivity analysis (P < 0.05). Furthermore, modeling methods, MRI, and MMG contributed to the heterogeneity in the specificity analysis (P < 0.05). CONCLUSION Our results show that radiomics has good diagnostic performance in predicting ALNM and SLNM in breast cancer. Thus, we propose this approach as a clinical method for the preoperative identification of LNM.
Collapse
Affiliation(s)
| | | | | | | | | | - Minguang Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Wang D, Hu Y, Zhan C, Zhang Q, Wu Y, Ai T. A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer. Front Oncol 2022; 12:940655. [PMID: 36338691 PMCID: PMC9633001 DOI: 10.3389/fonc.2022.940655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/07/2022] [Indexed: 10/03/2023] Open
Abstract
PURPOSE To develop a nomogram based on radiomics signature and deep-learning signature for predicting the axillary lymph node (ALN) metastasis in breast cancer. METHODS A total of 151 patients were assigned to a training cohort (n = 106) and a test cohort (n = 45) in this study. Radiomics features were extracted from DCE-MRI images, and deep-learning features were extracted by VGG-16 algorithm. Seven machine learning models were built using the selected features to evaluate the predictive value of radiomics or deep-learning features for the ALN metastasis in breast cancer. A nomogram was then constructed based on the multivariate logistic regression model incorporating radiomics signature, deep-learning signature, and clinical risk factors. RESULTS Five radiomics features and two deep-learning features were selected for machine learning model construction. In the test cohort, the AUC was above 0.80 for most of the radiomics models except DecisionTree and ExtraTrees. In addition, the K-nearest neighbor (KNN), XGBoost, and LightGBM models using deep-learning features had AUCs above 0.80 in the test cohort. The nomogram, which incorporated the radiomics signature, deep-learning signature, and MRI-reported LN status, showed good calibration and performance with the AUC of 0.90 (0.85-0.96) in the training cohort and 0.90 (0.80-0.99) in the test cohort. The DCA showed that the nomogram could offer more net benefit than radiomics signature or deep-learning signature. CONCLUSIONS Both radiomics and deep-learning features are diagnostic for predicting ALN metastasis in breast cancer. The nomogram incorporating radiomics and deep-learning signatures can achieve better prediction performance than every signature used alone.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqi Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenao Zhan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Machine Learning-Based Perihematomal Tissue Features to Predict Clinical Outcome after Spontaneous Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2022; 31:106475. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022] Open
|
17
|
Huang S, Li D, Zhuang L, Zhang J, Wu J. Identification of an Epithelial-Mesenchymal Transition-Related Long Non-coding RNA Prognostic Signature to Determine the Prognosis and Drug Treatment of Hepatocellular Carcinoma Patients. Front Med (Lausanne) 2022; 9:850343. [PMID: 35685422 PMCID: PMC9170944 DOI: 10.3389/fmed.2022.850343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. Epithelial–mesenchymal transition (EMT) is crucial for cancer progression and metastasis. Thus, we aimed to construct an EMT-related lncRNA signature for predicting the prognosis of HCC patients. Methods Cox regression analysis and LASSO regression method were used to build an EMT-related lncRNAs risk signature based on TCGA database. Kaplan-Meier survival analysis was conducted to compare the overall survival (OS) in different risk groups. ROC curves and Cox proportional-hazards analysis were performed to evaluate the performance of the risk signature. RT-qPCR was conducted in HCC cell lines and tissue samples to detect the expression of some lncRNAs in this risk model. Furthermore, a nomogram involving the risk score and clinicopathological features was built and validated with calibration curves and ROC curves. In addition, we explored the association between risk signature and tumor immunity, somatic mutations status, and drugs sensitivity. Results Twelve EMT-related lncRNAs were obtained to construct the prognostic risk signature for patients with HCC. The Kaplan-Meier curve analysis revealed that patients in the high-risk group had worse overall survival (OS) than those in low-risk group. ROC curves and Cox regression analysis suggested the risk signature could predict HCC survival exactly and independently. The prognostic value of the risk model was confirmed in the testing and entire groups. We also found AC099850.3 and AC092171.2 were highly expressed in HCC cells and HCC tissues. The nomogram could accurately predict survival probability of HCC patients. Gene set enrichment analysis (GSEA) and gene ontology (GO) analysis showed that cancer-related pathways and cell division activity were enriched in high-risk group. The SNPs showed that the prevalence of TP53 mutations was significantly different between high- and low-risk groups; the TP53 mutations and the high TMB were both associated with a worse prognosis in patients with HCC. We also observed widely associations between risk signature and drugs sensitivity in HCC. Conclusion A novel EMT-related lncRNAs risk signature, including 12 lncRNAs, was established and identified in patients with HCC, which can accurately predict the prognosis of HCC patients and may be used to guide individualized treatment in the clinical practice.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Dan Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Lingling Zhuang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
- Department of Gynaecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
- *Correspondence: Jianbing Wu,
| |
Collapse
|