1
|
Manjili DA, Babaei FN, Younesirad T, Ghadir S, Askari H, Daraei A. Dysregulated circular RNA and long non-coding RNA-Mediated regulatory competing endogenous RNA networks (ceRNETs) in ovarian and cervical cancers: A non-coding RNA-Mediated mechanism of chemotherapeutic resistance with new emerging clinical capacities. Arch Biochem Biophys 2025; 768:110389. [PMID: 40090441 DOI: 10.1016/j.abb.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Cervical cancer (CC) and ovarian cancer (OC) are among the most common gynecological cancers with significant mortality in women, and their incidence is increasing. In addition to the prominent role of the malignant aspect of these cancers in cancer-related women deaths, chemotherapy drug resistance is a major factor that contributes to their mortality and presents a clinical obstacle. Although the exact mechanisms behind the chemoresistance in these cancers has not been revealed, accumulating evidence points to the dysregulation of non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as key contributors. These ncRNAs perform the roles of regulators of signaling pathways linked to tumor formation and chemoresistance. Strong data from various recent studies have uncovered that the main mechanism of these ncRNAs in the induction of chemoresistance of CC and OC is done through a dysregulated miRNA sponge activity as competing endogenous RNA (ceRNA) in the competing endogenous RNA networks (ceRNETs), where a miRNA regulating a messenger RNA (mRNA) is trapped, thereby removing its inhibitory effect on the desired mRNA. Understanding these mechanisms is essential to enhancing treatment outcomes and managing the problem of drug resistance. This review provides a comprehensive overview of lncRNA- and circRNA-mediated ceRNETs as the core process of chemoresistance against the commonly used chemotherapeutics, including cisplatin, paclitaxel, oxaliplatin, carboplatin, and docetaxel in CC and OC. Furthermore, we highlight the clinical potential of these ncRNAs serving as diagnostic indicators of chemotherapy responses and therapeutic targets.
Collapse
Affiliation(s)
- Danial Amiri Manjili
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Naghdi Babaei
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Younesirad
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sara Ghadir
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Zheng Z, Zhou C, Yi F, Li J. OTUD6B-AS1: a multifaceted regulator of cancer with critical clinical implications. Am J Cancer Res 2025; 15:1-18. [PMID: 39949926 PMCID: PMC11815388 DOI: 10.62347/ehqk5961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
OTU Deubiquitinase 6B-Antisense Transcript 1 (OTUD6B-AS1), a novel long non-coding RNA (lncRNA), has recently emerged as a critical regulator in various tumors. Current research underscores its dual functionality, acting either as an oncogene or a tumor suppressor depending on the tumor context. In this work, we compile and discuss findings from a range of studies investigating the expression patterns of OTUD6B-AS1 in different cancers and its consequent effects on tumor behavior, both in vitro and in vivo. We delve into the mechanisms through which OTUD6B-AS1 influences cancer initiation and progression, focusing on its role in regulating essential cellular processes such as cell growth, migration, invasion, angiogenesis, ferroptosis, and treatment resistance. Operating through complex interactions with microRNAs (miRNAs), proteins, and pivotal signaling pathways - most notably Wnt/β-catenin - OTUD6B-AS1 exhibits variable roles across cancer types and cellular environments. Additionally, we assess the clinical relevance of OTUD6B-AS1 expression levels, evaluating its potential as a biomarker for cancer prognosis and diagnosis, as well as a target for therapeutic intervention. By consolidating existing knowledge, this work aims to highlight the clinical implications of OTUD6B-AS1 and encourage further research in oncology, ultimately contributing to the advancement of targeted cancer therapies.
Collapse
Affiliation(s)
- Zihan Zheng
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| | - Chenchen Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330008, Jiangxi, China
| | - Fengyun Yi
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang UniversityNanchang 330008, Jiangxi, China
| | - Jian Li
- Department of Gastrointestinal Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical CollegeNanchang 330006, Jiangxi, China
| |
Collapse
|
3
|
Wang H, Yang Y, Zhang E, Wang D, Cai W, Li C, Wei Q. LncRNA PGM5-AS1 Impairs the Resistance of Cervical Cancer to Cisplatin by Regulating the Hippo and PI3K-AKT Pathways. Biochem Genet 2024:10.1007/s10528-024-11011-0. [PMID: 39733221 DOI: 10.1007/s10528-024-11011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC. The PGM5-AS1 expression in CC tissues from 29 patients was quantified using quantitative reverse transcription-polymerase chain reaction. The cisplatin-resistant CC cells were constructed by using increasing cisplatin concentrations. The effects of cisplatin resistance interacting with PGM5-AS1 on CC cell malignancy were confirmed by performing Cell Counting Kit 8, colony formation, wound healing, and transwell assays. The key proteins of the Hippo and PI3K-AKT signaling pathways were evaluated by Western blotting. PGM5-AS1 with low expression in CC tissues was correlated to higher International Federation of Gynecology and Obstetrics stage, poor differentiation, lymph node metastasis, and cisplatin resistance. PGM5-AS1 overexpression suppressed the proliferation, migration, and invasion abilities of cisplatin-resistant CC cells. Additionally, PGM5-AS1 overexpression in cisplatin-resistant CC cells could induce the activation of the Hippo signaling pathway and the inactivation of the PI3K-AKT signaling pathway. PGM5-AS1 enhanced the CC cell's sensitivity to cisplatin by activating the Hippo signaling pathway and inactivating the PI3K-AKT signaling pathway. Our study data may provide a novel therapeutic biomarker to overcome cisplatin resistance in CC treatment.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China
| | - Yi Yang
- Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China
| | - Enjing Zhang
- Department of Pharmacology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430074, Hubei, China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China
| | - Weiqiong Cai
- Department of Ultrasound, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430074, Hubei, China
| | - Chun Li
- Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China
| | - Qiong Wei
- Department of Obstetrics and Gynecology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), No.216, Guanshan Avenue, Hongshan District, Wuhan, 430074, Hubei, China.
| |
Collapse
|
4
|
Sharma S. Unraveling the role of long non-coding RNAs in therapeutic resistance in acute myeloid leukemia: New prospects & challenges. Noncoding RNA Res 2024; 9:1203-1221. [PMID: 39036603 PMCID: PMC11259994 DOI: 10.1016/j.ncrna.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a fatal hematological disease characterized by the unchecked proliferation of immature myeloid blasts in different tissues developed by various mutations in hematopoiesis. Despite intense chemotherapeutic regimens, patients often experience poor outcomes, leading to substandard remission rates. In recent years, long non-coding RNAs (lncRNAs) have increasingly become important prognostic and therapeutic hotspots, due to their contributions to dysregulating many functional epigenetic, transcriptional, and post-translational mechanisms leading to alterations in cell expressions, resulting in increased chemoresistance and reduced apoptosis in leukemic cells. Through this review, I highlight and discuss the latest advances in understanding the major mechanisms through which lncRNAs confer therapy resistance in AML. In addition, I also provide perspective on the current strategies to target lncRNA expressions. A better knowledge of the critical role that lncRNAs play in controlling treatment outcomes in AML will help improve existing medications and devise new ones.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| |
Collapse
|
5
|
Wang Q, Li H, Wu T, Yu B, Cong H, Shen Y. Nanodrugs based on co-delivery strategies to combat cisplatin resistance. J Control Release 2024; 370:14-42. [PMID: 38615892 DOI: 10.1016/j.jconrel.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Cisplatin (CDDP), as a broad-spectrum anticancer drug, is able to bind to DNA and inhibit cell division. Despite the widespread use of cisplatin since its discovery, cisplatin resistance developed during prolonged chemotherapy, similar to other small molecule chemotherapeutic agents, severely limits its clinical application. Cisplatin resistance in cancer cells is mainly caused by three reasons: DNA repair, decreased cisplatin uptake/increased efflux, and cisplatin inactivation. In earlier combination therapies, the emergence of multidrug resistance (MDR) in cancer cells prevented the achievement of the desired therapeutic effect even with the accurate combination of two chemotherapeutic drugs. Therefore, combination therapy using nanocarriers for co-delivery of drugs is considered to be ideal for alleviating cisplatin resistance and reducing cisplatin-related toxicity in cancer cells. This article provides an overview of the design of cisplatin nano-drugs used to combat cancer cell resistance, elucidates the mechanisms of action of cisplatin and the pathways through which cancer cells develop resistance, and finally discusses the design of drugs and related carriers that can synergistically reduce cancer resistance when combined with cisplatin.
Collapse
Affiliation(s)
- Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio-nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
6
|
Li M, Chen J, Zhang H, Zhang Y, Wang J, Shen Z, Chen Y, Hou W, Chi C. LOC644656 promotes cisplatin resistance in cervical cancer by recruiting ZNF143 and activating the transcription of E6-AP. Cell Signal 2024; 117:111115. [PMID: 38395183 DOI: 10.1016/j.cellsig.2024.111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Cisplatin resistance remains a persistent challenge in cervical cancer (CC) treatment. Molecular biomarkers have garnered attention for their association with cisplatin resistance in various diseases. Long non-coding RNAs (lncRNAs) exert significant influence on CC development. This study explores the role of LOC644656 in regulating cisplatin resistance in CC. Parental and cisplatin-resistant CC cells underwent cisplatin treatment. Functional assays assessed cell proliferation and apoptosis under different conditions. RNA pull-down with mass spectrometry, along with literature review, elucidated the interaction between LOC644656, ZNF143, and E6-AP. Mechanistic assays analyzed the relationship between different factors. RT-qPCR and western blot quantified RNA and protein levels, respectively. In vivo models validated E6-AP's function. Results revealed LOC644656 overexpression in cisplatin-resistant CC cells, exacerbating cell growth. LOC644656 recruited ZNF143 to activate E6-AP transcription, promoting cisplatin resistance in CC. In conclusion, LOC644656 positively modulates E6-AP expression via ZNF143-mediated transcriptional activation, contributing to cisplatin resistance in CC.
Collapse
Affiliation(s)
- Min Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiahui Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zongji Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenjie Hou
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Soochow University, Suzhou 215127, China.
| | - Chi Chi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
7
|
Li F, Yang Y, Zhang X, Yu J, Yu Y. A novel prognostic model of breast cancer based on cuproptosis-related lncRNAs. Discov Oncol 2024; 15:35. [PMID: 38353835 PMCID: PMC10866837 DOI: 10.1007/s12672-024-00888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Breast cancer (BC) is a deadly form of malignancy responsible for the death of a large number of women every year. Cuproptosis is a newly discovered form of cell death that may have implications for the prognosis of BC. Long non-coding RNAs (lncRNAs) have been shown to be involved in the progression and development of BC. Here within, a novel model capable of predicting the prognosis of patients with BC was established based on cuproptosis-related lncRNAs. METHODS Data of breast cancer patients was downloaded, including clinical information from The Cancer Genome Atlas (TCGA) database and lncRNAs related to cuproptosis were isolated. In total, nine lncRNAs related to copper death were obtained by Cox regression model based on Least Absolute Shrinkage and Selector Operation (LASSO) algorithm for model construction. The model was verified by overall survival (OS), progression-free survival (PFS) and receiver operating characteristic (ROC) curve. The differences in immune function, tumor mutation burden (TMB) and tumor immune dysfunction and exclusion (TIDE) between patients with different risk scores were analyzed. RESULTS Based on cuproptosis-related lncRNAs, a prognostic model for predicting BC was constructed. Each patient was assigned a risk score based on our model formula. We found that patients with higher risk scores had significantly lower OS and PFS, increased TMB, and higher sensitivity to immunotherapy. CONCLUSIONS The model established in this study based on cuproptosis-related lncRNAs may be capable of improving the OS of patients with BC.
Collapse
Affiliation(s)
- Feixiang Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yongyan Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Xuan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jiafeng Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, NO.154, Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin Research Institute of Anesthesiology, Tianjin, China.
| |
Collapse
|
8
|
Zhang Z, Ye B, Lin Y, Liu W, Deng J, Ji W. LncRNA OTUD6B-AS1 overexpression promoted GPX4-mediated ferroptosis to suppress radioresistance in colorectal cancer. Clin Transl Oncol 2023; 25:3217-3229. [PMID: 37184781 DOI: 10.1007/s12094-023-03193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Radiotherapy is widely employed in colorectal cancer (CRC) treatment but is often compromised by developed radioresistance. This study explored the mechanism of long non-coding RNA ovarian tumor domain containing 6B-antisense RNA1 (lncRNA OTUD6B-AS1) in CRC radioresistance through tripartite motif 16 (TRIM16). METHODS CRC and non-cancerous tissues were collected and radioresistant CRC cells were established, with real-time quantitative polymerase chain reaction to determine gene expression in tissues and cells. Radioresistance was evaluated by cell counting kit-8 assay and immunofluorescence (γ-H2AX) and ferroptosis was tested by Western blot assay (ACSL4/GPX4) and assay kits (Fe2+/ROS/MDA/GSH). The association between ferroptosis and lncRNA OTUD6B-AS1-inhibited radioresistance was testified using ferroptosis inhibitor. The subcellular localization of lncRNA OTUD6B-AS1 was tested by the nuclear/cytoplasmic fractionation assay, with RNA immunoprecipitation assay to validate gene interactions. Rescue experiments were conducted to analyze the role of TRIM16 in CRC radioresistance. RESULTS LncRNA OTUD6B-AS1 and TRIM16 were poorly expressed (P < 0.01) in CRC tissues and cells and further decreased (P < 0.01) in radioresistant CRC cells. OTUD6B-AS1 overexpression decreased cell survival (P < 0.01), increased γ-H2AX levels (P < 0.01), and elevated ferroptosis and oxidative stress (P < 0.01) after X-ray radiation. Ferroptosis inhibitor attenuated radioresistance (P < 0.01) caused by lncRNA OTUD6B-AS1 overexpression. LncRNA OTUD6B-AS1 stabilized TRIM16 mRNA via binding to HuR. TRIM16 knockdown reduced ferroptosis and increased radioresistance (P < 0.05). CONCLUSION OTUD6B-AS1 overexpression stabilized TRIM16 via binding to HuR and increased GPX4-mediated ferroptosis, thus attenuating CRC radioresistance. Our study provided a new rationale for the treatment of CRC.
Collapse
Affiliation(s)
- Zilang Zhang
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China
| | - Baolong Ye
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yiban Lin
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China
| | - Wenjun Liu
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jianzhong Deng
- Department of Anorectal Surgery, The First People's Hospital of Foshan, 81 Lingnan Avenue North, Foshan, 528000, Guangdong, China.
| | - Wu Ji
- Department of General Surgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
9
|
Han X, Chen Y, Xie J, Wang Y. Characteristics of m 6A-related LncRNAs in breast cancer as prognostic biomarkers and immunotherapy. J Cancer 2023; 14:2919-2930. [PMID: 37781080 PMCID: PMC10539557 DOI: 10.7150/jca.87079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
N6-methyladenosine (m6A) is a common RNA modification in coding and non-coding RNAs and plays an important role in the occurrence and development of breast cancer (BC). However, the role of m6A-related lncRNAs in breast cancer prognosis is unclear. This study aimed to help verify the biological function of m6A-related lncRNAs in breast cancer prognosis through bio-informatics techniques. First, we screened 18 m6A-related lncRNAs from the TCGA database: AL137847.1, AC137932.2, OTUD6B-AS1, MORF4L2-AS1, AC078846.1, AC012442.1, AL118556.1, AL138955.1, AC009754.1, AC024257.4, AL391095.1, AC024270.3, AC087392.1, LINC02649, AC090948.2, AL158212.1, ITGA6-AS1, AL133243.2 and constructed a risk-prognosis model based on this. Based on the model's median risk score, BC patients were divided into high-risk and low-risk groups. Then, the predictive value of the model was verified by Cox regression, Lasso regression, Kaplan-Meier curve and ROC curve analysis, and biological differences between the two groups were verified by GO enrichment analysis, tumor mutation burden, immune indications and in vitro tests. Importantly, the risk score of this prognostic model is an excellent independent prognostic factor, and m6A regulators are differentially expressed in patients with different risks. In addition, based on patients' different sensitivities to drugs, some drug candidates for different risk populations are screened to provide targets for breast cancer treatment. The difference in immune function between high-risk and low-risk patients also affected the sensitivity to immunotherapy. In the validation of clinical samples, we analyzed the expression of relevant lncRNAs in different risk groups and speculated the possible impact on the prognosis of breast cancer patients. The risk assessment tool built based on the full analysis of these m6A-related genes and m6A-related lncRNA libraries, as well as the m6A-related lncRNAs, has a high prognostic prediction ability, which may provide a supplementary screening method for accurately judging the prognosis of BC and a new perspective for personalized treatment of breast cancer patients.
Collapse
Affiliation(s)
- Xinwei Han
- Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China
- Cytotherapy Laboratory, Shenzhen People's Hospital, 1017, Dongmen North Road, Luohu, Shenzhen, 518020, China
| | - Yu Chen
- Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China
| | - Jiaogui Xie
- Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China
| | - Yichao Wang
- Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China
| |
Collapse
|
10
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Ranga S, Yadav R, Chhabra R, Chauhan MB, Tanwar M, Yadav C, Kadian L, Ahuja P. Long non-coding RNAs as critical regulators and novel targets in cervical cancer: current status and future perspectives. Apoptosis 2023:10.1007/s10495-023-01840-6. [PMID: 37095313 PMCID: PMC10125867 DOI: 10.1007/s10495-023-01840-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Cervical cancer is among the leading causes of cancer-associated mortality in women. In spite of vaccine availability, improved screening procedures, and chemoradiation therapy, cervical cancer remains the most commonly diagnosed cancer in 23 countries and the leading cause of cancer deaths in 36 countries. There is, therefore, a need to come up with novel diagnostic and therapeutic targets. Long non-coding RNAs (lncRNAs) play a remarkable role in genome regulation and contribute significantly to several developmental and disease pathways. The deregulation of lncRNAs is often observed in cancer patients, where they are shown to affect multiple cellular processes, including cell cycle, apoptosis, angiogenesis, and invasion. Many lncRNAs are found to be involved in the pathogenesis as well as progression of cervical cancer and have shown potency to track metastatic events. This review provides an overview of lncRNA mediated regulation of cervical carcinogenesis and highlights their potential as diagnostic and prognostic biomarkers as well as therapeutic targets for cervical cancer. In addition, it also discusses the challenges associated with the clinical implication of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Shalu Ranga
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Ravindresh Chhabra
- Assistant Professor, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Chetna Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Lokesh Kadian
- School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Parul Ahuja
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
12
|
Bahari Khasraghi L, Nouri M, Vazirzadeh M, Hashemipour N, Talebi M, Aghaei Zarch F, Majidpoor J, Kalhor K, Farnia P, Najafi S, Aghaei Zarch SM. MicroRNA-206 in human cancer: Mechanistic and clinical perspectives. Cell Signal 2023; 101:110525. [PMID: 36400383 DOI: 10.1016/j.cellsig.2022.110525] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNAs approximately 20-25 nt in length, play important roles via directly binding to the corresponding 3' UTR of target mRNAs. Recent research has shown that miRNAs cover a wide range of diseases, including several types of cancer. It is interesting to note that miR-206 operates as a tumor suppressor and is downregulated in abundant cancer types, such as breast cancer, lung cancer, colorectal cancer, and so forth. Interestingly, a growing number of studies have also reported that miR-206 could function as an oncogene and promote tumor cell proliferation. Thereby, miR-206 may act as either oncogenes or tumor suppressors under certain conditions. In addition, it was widely acknowledged that restoring tumor-suppressor miR-206 has emerged as an unconventional cancer therapy strategy. Therefore, miR-206 might be a newfangled procedure for achieving a more significant treatment outcome for cancer patients. This review summarizes the role of miR-206 in several cancer types and the contributions made between miR-206 and the diagnosis, treatment, and drug resistance of solid tumors.
Collapse
Affiliation(s)
- Leila Bahari Khasraghi
- 15 khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Morteza Nouri
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| | - Poopak Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Sun Q, Wang L, Zhang C, Hong Z, Han Z. Cervical cancer heterogeneity: a constant battle against viruses and drugs. Biomark Res 2022; 10:85. [PMCID: PMC9670454 DOI: 10.1186/s40364-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Cervical cancer is the first identified human papillomavirus (HPV) associated cancer and the most promising malignancy to be eliminated. However, the ever-changing virus subtypes and acquired multiple drug resistance continue to induce failure of tumor prevention and treatment. The exploration of cervical cancer heterogeneity is the crucial way to achieve effective prevention and precise treatment. Tumor heterogeneity exists in various aspects including the immune clearance of viruses, tumorigenesis, neoplasm recurrence, metastasis and drug resistance. Tumor development and drug resistance are often driven by potential gene amplification and deletion, not only somatic genomic alterations, but also copy number amplifications, histone modification and DNA methylation. Genomic rearrangements may occur by selection effects from chemotherapy or radiotherapy which exhibits genetic intra-tumor heterogeneity in advanced cervical cancers. The combined application of cervical cancer therapeutic vaccine and immune checkpoint inhibitors has become an effective strategy to address the heterogeneity of treatment. In this review, we will integrate classic and recently updated epidemiological data on vaccination rates, screening rates, incidence and mortality of cervical cancer patients worldwide aiming to understand the current situation of disease prevention and control and identify the direction of urgent efforts. Additionally, we will focus on the tumor environment to summarize the conditions of immune clearance and gene integration after different HPV infections and to explore the genomic factors of tumor heterogeneity. Finally, we will make a thorough inquiry into completed and ongoing phase III clinical trials in cervical cancer and summarize molecular mechanisms of drug resistance among chemotherapy, radiotherapy, biotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Qian Sun
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liangliang Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Cong Zhang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhenya Hong
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiqiang Han
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
14
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Shi GJ, Zhou Q, Zhu Q, Wang L, Jiang GQ. A novel prognostic model associated with the overall survival in patients with breast cancer based on lipid metabolism-related long noncoding RNAs. J Clin Lab Anal 2022; 36:e24384. [PMID: 35441740 PMCID: PMC9169174 DOI: 10.1002/jcla.24384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lipid metabolism is closely related to the occurrence and development of breast cancer. Our purpose was to establish a novel model based on lipid metabolism-related long noncoding RNAs (lncRNAs) and evaluate the potential clinical value in predicting prognosis for patients suffering from breast cancer. METHODS RNA data and clinical information for breast cancer were obtained from the cancer genome atlas (TCGA) database. Lipid metabolism-related lncRNAs were identified via the criteria of correlation coefficient |R2 | > 0.4 and p < 0.001, and prognostic lncRNAs were identified to establish model through Cox regression analysis. The training set and validation set were established to certify the feasibility, and all samples were separated into high-risk group or low-risk group. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were conducted to evaluate the potential biological functions, and the immune infiltration levels were explored through Cibersortx database. RESULTS A total of 14 lncRNAs were identified as protective genes (AC022150.4, AC061992.1, AC090948.3, AC092794.1, AC107464.3, AL021707.8, AL451085.2, AL606834.2, FLJ42351, LINC00926, LINC01871, TNFRSF14-AS1, U73166.1 and USP30-AS1) with HRs < 1 while 10 lncRNAs (AC022150.2, AC090948.1, AC243960.1, AL021707.6, ITGB2-AS1, OTUD6B-AS1, SP2-AS1, TOLLIP-AS1, Z68871.1 and ZNF337-AS1) were associated with increased risk with HRs >1. A total of 24 prognostic lncRNAs were selected to construct the model. The patients in low-risk group were associated with better prognosis in both training set (p < 0.001) and validation set (p < 0.001). The univariate and multivariate Cox regression analyses revealed that risk score was an independent prognostic factors in both training set (p < 0.001) and validation set (p < 0.001). GO and GSEA analyses revealed that these lncRNAs were related to metabolism-related signal pathway and immune cells signal pathway. Risk score was negatively correlated with B cells (r = -0.097, p = 0.002), NK cells (r = -0.097, p = 0.002), Plasma cells (r = -0.111, p = 3.329e-04), T-cells CD4 (r = -0.064, p = 0.039) and T-cells CD8 (r = -0.322, p = 2.357e-26) and positively correlated with Dendritic cells (r = 0.077, p = 0.013) and Monocytes (r = 0.228, p = 1.107e-13). CONCLUSION The prognostic model based on lipid metabolism lncRNAs possessed an important value in survival prediction of breast cancer patients.
Collapse
Affiliation(s)
- Guo-Jian Shi
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thyroid and Breast Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, China
| | - Qin Zhou
- Department of Thyroid and Breast Surgery, The First People's Hospital of Kunshan, Kunshan, China
| | - Qi Zhu
- Department of Thyroid and Breast Surgery, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Li Wang
- Department of Radiotherapy, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Yang Q, Al-Hendy A. The Regulatory Functions and the Mechanisms of Long Non-Coding RNAs in Cervical Cancer. Cells 2022; 11:cells11071149. [PMID: 35406713 PMCID: PMC8998012 DOI: 10.3390/cells11071149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is one of the leading causes of death in gynecology cancer worldwide. High-risk human papillomaviruses (HPVs) are the major etiological agents for cervical cancer. Still, other factors also contribute to cervical cancer development because these cancers commonly arise decades after initial exposure to HPV. So far, the molecular mechanisms underlying the pathogenesis of cervical cancer are still quite limited, and a knowledge gap needs to be filled to help develop novel strategies that will ultimately facilitate the development of therapies and improve cervical cancer patient outcomes. Long non-coding RNAs (lncRNAs) have been increasingly shown to be involved in gene regulation, and the relevant role of lncRNAs in cervical cancer has recently been investigated. In this review, we summarize the recent progress in ascertaining the biological functions of lncRNAs in cervical cancer from the perspective of cervical cancer proliferation, invasion, and metastasis. In addition, we provide the current state of knowledge by discussing the molecular mechanisms underlying the regulation and emerging role of lncRNAs in the pathogenesis of cervical cancer. Comprehensive and deeper insights into lncRNA-mediated alterations and interactions in cellular events will help develop novel strategies to treat patients with cervical cancer.
Collapse
|