1
|
WANG CHAOQUN, ZHANG TING, ZHANG CHAOHE. LncRNA AFAP1-AS1 exhibits oncogenic characteristics and promotes gemcitabine-resistance of cervical cancer cells through miR-7-5p/EGFR axis. Oncol Res 2024; 32:1867-1879. [PMID: 39574469 PMCID: PMC11576921 DOI: 10.32604/or.2024.044547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/10/2024] [Indexed: 11/24/2024] Open
Abstract
Background Drug resistance is the main factor contributing to cancer recurrence and poor prognosis. Exploration of drug resistance-related mechanisms and effective therapeutic targets are the aim of molecular targeted therapy. In our study, the role of long non-coding RNA (lncRNA) AFAP1-AS1 in gemcitabine resistance and related mechanisms were explored in cervical cancer cells. Methods Gemcitabine-resistant cervical cancer cell lines HT-3-Gem and SW756-Gem were constructed using the gemcitabine concentration gradient method. The overall survival rates and recurrence-free survival rates were evaluated by Kaplan-Meier analysis. The interaction was verified through a Dual-luciferase reporter gene assay and a Biotinylated RNA pull-down assay. Cell proliferation ability was assessed through methyl-thiazolyl-tetrazolium (MTT), soft agar, and colony formation experiments. Cell cycle and apoptosis were detected by flow cytometry. Results Up-regulation of AFAP1-AS1 in cervical cancer predicted a poor prognosis. Besides, patients in the gemcitabine-resistance group had higher levels of AFAP1-AS1 than the gemcitabine-sensitive group. AFAP1-AS1 promoted tumor growth and induced gemcitabine tolerance of cervical cancer cells. In addition, AFAP1-AS1 mediated epidermal growth factor receptor (EGFR) expression by serving as a molecular sponge for microRNA-7a-5p (miR-7-5p). This present study also proved that the knockdown of EGFR or overexpression of miR-7a-5p abolished the accelerative role of AFAP1-AS1 overexpression in cancer progression and gemcitabine tolerance. Conclusions In general, the AFAP1-AS1/miR-7-5p/EGFR axis was tightly related to the progression and gemcitabine tolerance of cervical cancer, providing potential targets for the management of cervical cancer.
Collapse
Affiliation(s)
- CHAOQUN WANG
- Department of Gynecology, Aviation General Hospital, Beijing, 100020, China
| | - TING ZHANG
- Department of Burn and Skin Surgery, First Affiliated Hospital of Air Force Military Medical University, Xi’an, 710032, China
| | - CHAOHE ZHANG
- Department of Oncology and Hematology, Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
2
|
Yazarlou F, Martinez I, Lipovich L. Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance. Front Oncol 2024; 14:1437542. [PMID: 39346726 PMCID: PMC11427263 DOI: 10.3389/fonc.2024.1437542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 10/01/2024] Open
Abstract
Radiotherapy (RT) serves as one of the key adjuvant treatments in management of breast cancer. Nevertheless, RT has two major problems: side effects and radioresistance. Given that patients respond differently to RT, it is imperative to understand the molecular mechanisms underlying these differences. Two-thirds of human genes do not encode proteins, as we have realized from genome-scale studies conducted after the advent of the genomic era; nevertheless, molecular understanding of breast cancer to date has been attained almost entirely based on protein-coding genes and their pathways. Long non-coding RNAs (lncRNAs) are a poorly understood but abundant class of human genes that yield functional non-protein-coding RNA transcripts. Here, we canvass the field to seek evidence for the hypothesis that lncRNAs contribute to radioresistance in breast cancer. RT-responsive lncRNAs ranging from "classical" lncRNAs discovered at the dawn of the post-genomic era (such as HOTAIR, NEAT1, and CCAT), to long intergenic lncRNAs such as LINC00511 and LINC02582, antisense lncRNAs such as AFAP-AS1 and FGD5-AS1, and pseudogene transcripts such as DUXAP8 were found during our screen of the literature. Radiation-related pathways modulated by these lncRNAs include DNA damage repair, cell cycle, cancer stem cells phenotype and apoptosis. Thus, providing a clear picture of these lncRNAs' underlying RT-relevant molecular mechanisms should help improve overall survival and optimize the best radiation dose for each individual patient. Moreover, in healthy humans, lncRNAs show greater natural expression variation than protein-coding genes, even across individuals, alluding to their exceptional potential for targeting in truly personalized, precision medicine.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., Shenzhen, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
3
|
Li F, Xian D, Huang J, Nie L, Xie T, Sun Q, Zhang X, Zhou Y. SP1-Induced Upregulation of LncRNA AFAP1-AS1 Promotes Tumor Progression in Triple-Negative Breast Cancer by Regulating mTOR Pathway. Int J Mol Sci 2023; 24:13401. [PMID: 37686205 PMCID: PMC10563082 DOI: 10.3390/ijms241713401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The long non-coding RNA (lncRNA) actin fiber-associated protein-1 antisense RNA 1 (AFAP1-AS1) exerted oncogenic activity in triple-negative breast cancer (TNBC). We designed this study and conducted it to investigate the upstream regulation mechanism of AFAP1-AS1 in TNBC tumorigenesis. In this work, we proved the localization of AFAP1-AS1 in the cytoplasm. We elucidated the mechanism by which the transcription factor specificity protein 1 (SP1) modulated AFAP1-AS1 in TNBC progression, which has yet to be thoroughly studied. Dual luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay revealed a strong affinity of SP1 toward the promoter regions P3 of AFAP1-AS1, proving the gene expression regulation of AFAP1-AS1 via SP1 in TNBC. Additionally, SP1 could facilitate the tumorigenesis of TNBC cells in vitro and in vivo by regulating the AFAP1-AS1 expression. Furthermore, silenced AFAP1-AS1 suppressed the expression of genes in the mTOR pathway, such as eukaryotic translation initiation factor 4B (EIF4B), mitogen-activated protein kinase-associated protein 1 (MAPKAP1), SEH1-like nucleoporin (SEH1L), serum/glucocorticoid regulated kinase 1 (SGK1), and its target NEDD4-like E3 ubiquitin protein ligase (NEDD4L), and promoted the gene expression of s-phase kinase-associated protein 2 (SKP2). Overall, this study emphasized the oncogenic role of SP1 and AFAP1-AS1 in TNBC and illustrated the AFAP1-AS1 upstream interaction with SP1 and the downstream modulatory of mTOR signaling, thus offering insights into the tumorigenesis mechanism in TNBC.
Collapse
Affiliation(s)
- Fangyuan Li
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Daheng Xian
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Junying Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Longzhu Nie
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Ting Xie
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100730, China; (F.L.); (T.X.)
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing 100032, China; (D.X.); (J.H.); (L.N.); (Q.S.)
| |
Collapse
|
4
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Akbari Dilmaghani N. A review on the role of PTENP1 in human disorders with an especial focus on tumor suppressor role of this lncRNA. Cancer Cell Int 2022; 22:207. [PMID: 35655204 PMCID: PMC9161594 DOI: 10.1186/s12935-022-02625-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
PTENP1 is a long non-coding RNA which has been regarded as a pseudogene of the PTEN tumor suppressor gene. However, it has been shown to be a biologically active transcript that can function as a competing endogenous RNA and enhance expression of PTEN protein. This lncRNA has two transcripts, namely PTENP1-202 and PTENP1-202 with sizes of 3996 and 1215 bps, respectively. PTENP1 acts as a sponge for some PETN-targeting miRNAs, such as miR-17, miR-20a, miR-19b, miR-106b, miR-200c, miR-193a-3p, miR-499-5p and miR-214. Besides, it can affect miR-20a/PDCD4, miR-27a-3p/EGR1, miR-17‐5p/SOCS6 and miR-19b/TSC1 axes. This long non-coding RNA participates in the pathoetiology of several types of cancers as well as non-malignant conditions such as alcohol-induced osteopenia, insulin resistance, osteoporosis, sepsis-associated cardiac dysfunction and spinal cord injury. In the current review, we elucidate the role of PTENP1 in human disorders, particularly malignant conditions based on evidence acquired from cell line assays, animal studies and investigations on human samples.
Collapse
|
5
|
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, Zhang H, Wei P, Li D. Construction of a prognostic glycolysis-related lncRNA signature for patients with colorectal cancer. Cancer Med 2022; 12:930-948. [PMID: 35616307 PMCID: PMC9844662 DOI: 10.1002/cam4.4851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 01/26/2023] Open
Abstract
Aerobic glycolysis is a common metabolic phenotype in tumors that helps cancer cells adjust to severe living conditions and can aid metastasis in several types of carcinomas, including colorectal cancer (CRC). Long non-coding RNAs (lncRNAs) can influence tumor biology and have been previously used to assess patients' outcomes and to identify potential therapeutic targets. However, despite the importance of glycolysis-related lncRNAs (GRLs) in the development of CRC, studies on their use as prognostic markers are still limited. Herein, we applied a series of bioinformatic analyses to screen potential prognostic lncRNAs for colorectal cancer. Out of all lncRNAs screened, nine GRLs were selected to constitute a prognostic signature. Based on the signature, two molecular subtypes were classified with distinct prognostic outcomes and excellent diagnostic accuracy (The 1-, 3- and 5-year AUC are 0.756, 0.716, and 0.721, respectively). The prognostic value of this signature was further validated using another cohort. The enriched molecular pathways, immune infiltration, and mutation landscape were also significantly different between the two groups. The different drug sensitivity results between the two groups suggest a potential strategy for precise treatment. Furthermore, we confirmed that AFAP1-AS1 could regulate aerobic glycolysis and metastasis of CRC cells. Overall, we developed a glycolysis-related lncRNA (GRL) signature and suggested that this signature could offer a predictive value and identify potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Yaxian Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Zijuan Hu
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Huixia Huang
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| | - Hong Zhang
- Colorectal Tumor Surgery Ward, Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Ping Wei
- Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina,Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina,Cancer Institute, Fudan University Shanghai Cancer CenterShanghaiChina,Institute of PathologyFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina,Department of OncologyShanghai Medical College Fudan UniversityShanghaiChina
| |
Collapse
|