1
|
Li MY, Pan Y, Lv Y, Ma H, Sun PL, Gao HW. Digital pathology and artificial intelligence in renal cell carcinoma focusing on feature extraction: a literature review. Front Oncol 2025; 15:1516264. [PMID: 39926279 PMCID: PMC11802434 DOI: 10.3389/fonc.2025.1516264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
The integrated application of artificial intelligence (AI) and digital pathology (DP) technology has opened new avenues for advancements in oncology and molecular pathology. Consequently, studies in renal cell carcinoma (RCC) have emerged, highlighting potential in histological subtype classification, molecular aberration identification, and outcome prediction by extracting high-throughput features. However, reviews of these studies are still rare. To address this gap, we conducted a thorough literature review on DP and AI applications in RCC through database searches. Notably, we found that AI models based on deep learning achieved area under the curve (AUC) of over 0.93 in subtype classification, 0.89-0.96 in grading of clear cell RCC, 0.70-0,89 in molecular prediction, and over 0.78 in survival prediction. This review finally discussed the current state of researches and potential future directions.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Pan
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Lv
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - He Ma
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ping-Li Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hong-Wen Gao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Ohe C, Yoshida T, Amin MB, Uno R, Atsumi N, Yasukochi Y, Ikeda J, Nakamoto T, Noda Y, Kinoshita H, Tsuta K, Higasa K. Deep learning-based predictions of clear and eosinophilic phenotypes in clear cell renal cell carcinoma. Hum Pathol 2023; 131:68-78. [PMID: 36372298 DOI: 10.1016/j.humpath.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
We have recently shown that histological phenotypes focusing on clear and eosinophilic cytoplasm in clear cell renal cell carcinoma (ccRCC) correlated with prognosis and the response to angiogenesis inhibition and checkpoint blockade. This study aims to objectively show the diagnostic utility of clear or eosinophilic phenotypes of ccRCC by developing an artificial intelligence (AI) model using the TCGA-ccRCC dataset and to demonstrate if the clear or eosinophilic predicted phenotypes correlate with pathological factors and gene signatures associated with angiogenesis and cancer immunity. Before the development of the AI model, histological evaluation using hematoxylin and eosin whole-slide images of the TCGA-ccRCC cohort (n = 435) was performed by a urologic pathologist. The AI model was developed as follows. First, the highest-grade area on each whole slide image was captured for image processing. Second, the selected regions were cropped into tiles. Third, the AI model was trained using transfer learning on a deep convolutional neural network, and clear or eosinophilic predictions were scaled as AI scores. Next, we verified the AI model using a validation cohort (n = 95). Finally, we evaluated the accuracy of the prognostic predictions of the AI model and revealed that the AI model detected clear and eosinophilic phenotypes with high accuracy. The AI model stratified the patients' outcomes, and the predicted eosinophilic phenotypes correlated with adverse clinicopathological characteristics and high immune-related gene signatures. In conclusion, the AI-based histologic subclassification accurately predicted clear or eosinophilic phenotypes of ccRCC, allowing for consistently reproducible stratification for prognostic and therapeutic stratification.
Collapse
Affiliation(s)
- Chisato Ohe
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan.
| | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN 38163, USA; Department of Urology, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Rena Uno
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan; Department of Pathology, Hyogo Cancer Center, Akashi, Hyogo 673-8558, Japan
| | - Naho Atsumi
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| | - Junichi Ikeda
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan; Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Takahiro Nakamoto
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan; Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Yuri Noda
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Koji Tsuta
- Department of Pathology, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| |
Collapse
|
3
|
Jiang Y, Huang S, Zhu X, Cheng L, Liu W, Chen Q, Yang D. Artificial Intelligence Meets Whole Slide Images: Deep Learning Model Shapes an Immune-Hot Tumor and Guides Precision Therapy in Bladder Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8213321. [PMID: 36245985 PMCID: PMC9553530 DOI: 10.1155/2022/8213321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Background To construct and validate a deep learning cluster from whole slide images (WSI) for depicting the immunophenotypes and functional heterogeneity of the tumor microenvironment (TME) in patients with bladder cancer (BLCA) and to explore an artificial intelligence (AI) score to explore the underlying biological pathways in the developed WSI cluster. Methods In this study, the WSI cluster was constructed based on a deep learning procedure. Further rerecognition of TME features in pathological images was applied based on a neural network. Then, we integrated the TCGA cohort and several external testing cohorts to explore and validate this novel WSI cluster and a corresponding quantitative indicator, the AI score. Finally, correlations between the AI cluster (AI score) and classical BLCA molecular subtypes, immunophenotypes, functional heterogeneity, and potential therapeutic method in BLCA were assessed. Results The WSI cluster was identified associated with clinical survival (P < 0.001) and was proved as an independent predictor (P = 0.031), which could also predict the immunology and the clinical significance of BLCA. Rerecognition of pathological images established a robust 3-year survival prediction model (with an average classification accuracy of 86%, AUC of 0.95) for BLCA patients combining TME features and clinical features. In addition, an AI score was constructed to quantify the underlying logic of the WSI cluster (AUC = 0.838). Finally, we hypothesized that high AI score shapes an immune-hot TME in BLCA. Thus, treatment options including immune checkpoint blockade (ICB), chemotherapy, and ERBB therapy can be used for the treatment of BLCA patients in WSI cluster1 (high AI score subtype). Conclusions In general, we showed that deep learning can predict prognosis and may aid in the precision medicine for BLCA directly from H&E histology, which is more economical and efficient.
Collapse
Affiliation(s)
- Yiheng Jiang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Shengbo Huang
- School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Lifespan Academic Medical Center, Providence, RI 02903, USA
| | - Wenlong Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
- School of Information and Communication Engineering, Dalian University of Technology, Dalian, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
- School of Information Science and Technology, Dalian Maritime University, 116000 Dalian City, Liaoning Province, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| |
Collapse
|