1
|
Tiwari AK, Jain D, Nizamuddin S, Srivastava RS, Singh S, Shrivastava SK, Khattri A. Solute carrier family 2 members (SLC2A) as potential targets for the treatment of head and neck squamous cell carcinoma patients. HUMAN GENE 2025; 43:201365. [DOI: 10.1016/j.humgen.2024.201365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Feng QS, Shan XF, Yau V, Cai ZG, Xie S. Facilitation of Tumor Stroma-Targeted Therapy: Model Difficulty and Co-Culture Organoid Method. Pharmaceuticals (Basel) 2025; 18:62. [PMID: 39861125 PMCID: PMC11769033 DOI: 10.3390/ph18010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Tumors, as intricate ecosystems, comprise oncocytes and the highly dynamic tumor stroma. Tumor stroma, representing the non-cancerous and non-cellular composition of the tumor microenvironment (TME), plays a crucial role in oncogenesis and progression, through its interactions with biological, chemical, and mechanical signals. This review aims to analyze the challenges of stroma mimicry models, and highlight advanced personalized co-culture approaches for recapitulating tumor stroma using patient-derived tumor organoids (PDTOs). Methods: This review synthesizes findings from recent studies on tumor stroma composition, stromal remodeling, and the spatiotemporal heterogeneities of the TME. It explores popular stroma-related models, co-culture systems integrating PDTOs with stromal elements, and advanced techniques to improve stroma mimicry. Results: Stroma remodeling, driven by stromal cells, highlights the dynamism and heterogeneity of the TME. PDTOs, derived from tumor tissues or cancer-specific stem cells, accurately mimic the tissue-specific and genetic features of primary tumors, making them valuable for drug screening. Co-culture models combining PDTOs with stromal elements effectively recreate the dynamic TME, showing promise in personalized anti-cancer therapy. Advanced co-culture techniques and flexible combinations enhance the precision of tumor-stroma recapitulation. Conclusions: PDTO-based co-culture systems offer a promising platform for stroma mimicry and personalized anti-cancer therapy development. This review underscores the importance of refining these models to advance precision medicine and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiu-Shi Feng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Xiao-Feng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Vicky Yau
- Division of Oral and Maxillofacial Surgery, Columbia Irving Medical Center, New York City, NY 10027, USA;
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| |
Collapse
|
3
|
Minini M, Pavy A, Lekbaby B, Fouassier L. Crosstalk between cancer cell plasticity and immune microenvironment in cholangiocarcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive tumor of the biliary tree characterized by an intense desmoplastic tumor microenvironment (TME). To date, treatment of CCA remains challenging; tumor resection is the only curative treatment with a high recurrence probability. Besides resection, therapeutic options have moved forward with the advent of immunotherapies, but these remain limited and low effective. Our knowledge about the cellular interplays in CCA is still fragmentary. An area is currently emerging regarding the potential role of cancer cell plasticity in the genesis of an immunosuppressive microenvironment. The cancer cells’ ability to acquire stemness properties and to disseminate through an epithelial-mesenchymal transition (EMT) shape a tumor immune microenvironment that supports cancer progression by attracting immunosuppressive cells including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and by increasing the expression of inhibitory immune checkpoints such as PD-1/PD-L-1. EMT-inducing transcription factors (EMT-TF) have recently emerged as regulators of tumor immunity by creating an immunosuppressive microenvironment. This review delves into the molecular mechanisms underlying the existing links between EMT/stemness and tumor immune microenvironment, as well as the last discoveries in CCA.
Collapse
|
4
|
Snyder CM, Gill SI. Good CARMA: Turning bad tumor-resident myeloid cells good with chimeric antigen receptor macrophages. Immunol Rev 2023; 320:236-249. [PMID: 37295964 DOI: 10.1111/imr.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
In religious philosophy, the concept of karma represents the effect of one's past and present actions on one's future. Macrophages are highly plastic cells with myriad roles in health and disease. In the setting of cancer, macrophages are among the most plentiful members of the immune microenvironment where they generally support tumor growth and restrain antitumor immunity. However, macrophages are not necessarily born bad. Macrophages or their immediate progenitors, monocytes, are induced to traffic to the tumor microenvironment (TME) and during this process they are polarized toward a tumor-promoting phenotype. Efforts to deplete or repolarize tumor-associated macrophages (TAM) for therapeutic benefit in cancer have to date disappointed. By contrast, genetic engineering of macrophages followed by their transit into the TME may allow these impressionable cells to mend their ways. In this review, we summarize and discuss recent advances in the genetic engineering of macrophages for the treatment of cancer.
Collapse
Affiliation(s)
- Christopher M Snyder
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Saar I Gill
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Gu Y, Zhang Z, Camps MG, Ossendorp F, Wijdeven RH, ten Dijke P. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadf9915. [PMID: 37450593 PMCID: PMC10348683 DOI: 10.1126/sciadv.adf9915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The genetic circuits that allow cancer cells to evade immune killing via epithelial mesenchymal plasticity remain poorly understood. Here, we showed that mesenchymal-like (Mes) KPC3 pancreatic cancer cells were more resistant to cytotoxic T lymphocyte (CTL)-mediated killing than the parental epithelial-like (Epi) cells and used parallel genome-wide CRISPR screens to assess the molecular underpinnings of this difference. Core CTL-evasion genes (such as IFN-γ pathway components) were clearly evident in both types. Moreover, we identified and validated multiple Mes-specific regulators of cytotoxicity, such as Egfr and Mfge8. Both genes were significantly higher expressed in Mes cancer cells, and their depletion sensitized Mes cancer cells to CTL-mediated killing. Notably, Mes cancer cells secreted more Mfge8 to inhibit proliferation of CD8+ T cells and production of IFN-γ and TNFα. Clinically, increased Egfr and Mfge8 expression was correlated with a worse prognosis. Thus, Mes cancer cells use Egfr-mediated intrinsic and Mfge8-mediated extrinsic mechanisms to facilitate immune escape from CD8+ T cells.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Marcel G. M. Camps
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ruud H. Wijdeven
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| |
Collapse
|
7
|
Garinet S, Didelot A, Marisa L, Beinse G, Sroussi M, Le Pimpec-Barthes F, Fabre E, Gibault L, Laurent-Puig P, Mouillet-Richard S, Legras A, Blons H. A novel Chr1-miR-200 driven whole transcriptome signature shapes tumor immune microenvironment and predicts relapse in early-stage lung adenocarcinoma. J Transl Med 2023; 21:324. [PMID: 37189151 DOI: 10.1186/s12967-023-04086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/25/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND In Lung adenocarcinoma (LUAD), targeted therapies and immunotherapies have moved from metastatic to early stage and stratification of the relapse risk becomes mandatory. Here we identified a miR-200 based RNA signature that delineates Epithelial-to-mesenchymal transition (EMT) heterogeneity and predicts survival beyond current classification systems. METHODS A miR-200 signature was identified using RNA sequencing. We scored the miR-200 signature by WISP (Weighted In Silico Pathology), used GSEA to identify pathway enrichments and MCP-counter to characterize immune cell infiltrates. We evaluate the clinical value of this signature in our series of LUAD and using TCGA and 7 published datasets. RESULTS We identified 3 clusters based on supervised classification: I is miR-200-sign-down and enriched in TP53 mutations IIA and IIB are miR-200-sign-up: IIA is enriched in EGFR (p < 0.001), IIB is enriched in KRAS mutation (p < 0.001). WISP stratified patients into miR-200-sign-down (n = 65) and miR-200-sign-up (n = 42). Several biological processes were enriched in MiR-200-sign-down tumors, focal adhesion, actin cytoskeleton, cytokine/receptor interaction, TP53 signaling and cell cycle pathways. Fibroblast, immune cell infiltration and PDL1 expression were also significantly higher suggesting immune exhaustion. This signature stratified patients into high-vs low-risk groups, miR-200-sign-up had higher DFS, median not reached at 60 vs 41 months and within subpopulations with stage I, IA, IB, or II. Results were validated on TCGA data on 7 public datasets. CONCLUSION This EMT and miR-200-related prognostic signature refines prognosis evaluation independently of tumor stage and paves the way towards assessing the predictive value of this LUAD clustering to optimize perioperative treatment.
Collapse
Affiliation(s)
- Simon Garinet
- Assistance Publique-Hôpitaux de Paris, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, European Georges Pompidou Hospital, Paris Cancer Institute CARPEM, 20 Rue Leblanc, 75015, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France.
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France.
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | - Laetitia Marisa
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Guillaume Beinse
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | - Marine Sroussi
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | | | - Elizabeth Fabre
- Department of Thoracic Oncology, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Laure Gibault
- Department of Pathology, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France
| | - Antoine Legras
- Department of Thoracic Surgery, Georges Pompidou European Hospital, APHP Centre, Paris, France
| | - Hélène Blons
- Assistance Publique-Hôpitaux de Paris, Department of Biochemistry, Pharmacogenetics and Molecular Oncology, European Georges Pompidou Hospital, Paris Cancer Institute CARPEM, 20 Rue Leblanc, 75015, Paris, France.
- Centre de Recherche des Cordeliers, INSERM, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), Université de Paris, Sorbonne Université, Paris, France.
- Department of Genetics and Molecular Medicine, Georges Pompidou European Hospital, APHP Centre, Paris, France.
| |
Collapse
|
8
|
May AM, Batoon L, McCauley LK, Keller ET. The Role of Tumor Epithelial-Mesenchymal Transition and Macrophage Crosstalk in Cancer Progression. Curr Osteoporos Rep 2023; 21:117-127. [PMID: 36848026 PMCID: PMC10106416 DOI: 10.1007/s11914-023-00780-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published findings regarding the role of epithelial to mesenchymal transition (EMT) in tumor progression, macrophages in the tumor microenvironment, and crosstalk that exists between tumor cells and macrophages. RECENT FINDINGS EMT is a crucial process in tumor progression. In association with EMT changes, macrophage infiltration of tumors occurs frequently. A large body of evidence demonstrates that various mechanisms of crosstalk exist between macrophages and tumor cells that have undergone EMT resulting in a vicious cycle that promotes tumor invasion and metastasis. Tumor-associated macrophages and tumor cells undergoing EMT provide reciprocal crosstalk which leads to tumor progression. These interactions provide potential targets to exploit for therapy.
Collapse
Affiliation(s)
- Allison M May
- Department of Urology, Medical School, University of Michigan, NCRC, Building 14, Room 116 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA
| | - Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Evan T Keller
- Department of Urology, Medical School, University of Michigan, NCRC, Building 14, Room 116 2800 Plymouth Road, Ann Arbor, MI, 48109-2800, USA.
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Single Cell Spatial Analysis Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Macrophages at the interface of the co-evolving cancer ecosystem. Cell 2023; 186:1627-1651. [PMID: 36924769 DOI: 10.1016/j.cell.2023.02.020] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are versatile and heterogeneous innate immune cells undertaking central functions in balancing immune responses and tissue repair to maintain homeostasis. This plasticity, once co-opted by malignant outgrowth, orchestrates manifold reciprocal interactions within the tumor microenvironment, fueling the evolution of the cancer ecosystem. Here, we review the multilayered sources of influence that jointly underpin and longitudinally shape tumor-associated macrophage (TAM) phenotypic states in solid neoplasms. We discuss how, in response to these signals, TAMs steer tumor evolution in the context of natural selection, biological dispersion, and treatment resistance. A number of research frontiers to be tackled are laid down in this review to therapeutically exploit the complex roles of TAMs in cancer. Building upon knowledge obtained from currently applied TAM-targeting strategies and using next generation technologies, we propose conceptual advances and novel therapeutic avenues to rewire TAM multifaceted regulation of the co-evolving cancer ecosystem.
Collapse
|
10
|
Prognostic Value of EMT Gene Signature in Malignant Mesothelioma. Int J Mol Sci 2023; 24:ijms24054264. [PMID: 36901697 PMCID: PMC10001510 DOI: 10.3390/ijms24054264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Malignant mesothelioma (MESO) consists of epithelioid, biphasic, and sarcomatoid subtypes with different epithelial-mesenchymal transition (EMT) phenotypes. We previously identified a panel of four MESO EMT genes correlating with an immunosuppressive tumor microenvironment and poor survival. In this study, we investigated the correlation between these MESO EMT genes, the immune profile, and the genomic and epigenomic alterations to identify potential therapeutic targets to prevent or reverse the EMT process. Using multiomic analysis, we observed that the MESO EMT genes were positively correlated with hypermethylation of epigenetic genes and loss of CDKN2A/B expression. MESO EMT genes such as COL5A2, ITGAV, SERPINH1, CALD1, SPARC, and ACTA2 were associated with upregulation of TGF-β signaling, hedgehog signaling, and IL-2-STAT5 signaling and downregulation of the IFN-α and IFN-γ response. Immune checkpoints such as CTLA4, CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1 (PD-1), and TIGIT were upregulated, while LAG3, LGALS9, and VTCN1 were downregulated with the expression of MESO EMT genes. CD160, KIR2DL1, and KIR2DL3 were also broadly downregulated with the expression of MESO EMT genes. In conclusion, we observed that the expression of a panel of MESO EMT genes was associated with hypermethylation of epigenetic genes and loss of expression of CDKN2A and CDKN2B. Expression of MESO EMT genes was associated with downregulation of the type I and type II IFN response, loss of cytotoxicity and NK cell activity, and upregulation of specific immune checkpoints, as well as upregulation of the TGF-β1/TGFBR1 pathway.
Collapse
|
11
|
Nygaard V, Ree AH, Dagenborg VJ, Børresen-Dale AL, Edwin B, Fretland ÅA, Grzyb K, Haugen MH, Mælandsmo GM, Flatmark K. A PRRX1 Signature Identifies TIM-3 and VISTA as Potential Immune Checkpoint Targets in a Subgroup of Microsatellite Stable Colorectal Cancer Liver Metastases. CANCER RESEARCH COMMUNICATIONS 2023; 3:235-244. [PMID: 36968142 PMCID: PMC10035516 DOI: 10.1158/2767-9764.crc-22-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Disease recurrence and drug resistance are major challenges in the clinical management of patients with colorectal cancer liver metastases (CLM), and because tumors are generally microsatellite stable (MSS), responses to immune therapies are poor. The mesenchymal phenotype is overrepresented in treatment-resistant cancers and is associated with an immunosuppressed microenvironment. The aim of this work was to molecularly identify and characterize a mesenchymal subgroup of MSS CLM to identify novel therapeutic approaches. We here generated a mesenchymal gene expression signature by analysis of resection specimens from 38 patients with CLM using ranked expression level of the epithelial-to-mesenchymal transition-related transcription factor PRRX1. Downstream pathway analysis based on the resulting gene signature was performed and independent, publicly available datasets were used to validate the findings. A subgroup comprising 16% of the analyzed CLM samples were classified as mesenchymal, or belonging to the PRRX1 high group. Analysis of the PRRX1 signature genes revealed a distinct immunosuppressive phenotype with high expression of immune checkpoints HAVCR2/TIM-3 and VISTA, in addition to the M2 macrophage marker CD163. The findings were convincingly validated in datasets from three external CLM cohorts. Upregulation of immune checkpoints HAVCR2/TIM-3 and VISTA in the PRRX1 high subgroup is a novel finding, and suggests immune evasion beyond the PD-1/PD-L1 axis, which may contribute to poor response to PD-1/PD-L1-directed immune therapy in MSS colorectal cancer. Importantly, these checkpoints represent potential novel opportunities for immune-based therapy approaches in a subset of MSS CLM. Significance CLM is an important cause of colorectal cancer mortality where the majority of patients have yet to benefit from immunotherapies. In this study of gene expression profiling analyses, we uncovered novel immune checkpoint targets in a subgroup of patients with MSS CLMs harboring a mesenchymal phenotype.
Collapse
Affiliation(s)
- Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Vegar Johansen Dagenborg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
- The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Åsmund Avdem Fretland
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
- The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunhild M. Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Tan L, Fu D, Liu F, Liu J, Zhang Y, Li X, Gao J, Tao K, Wang G, Wang L, Wang Z. MXRA8 is an immune-relative prognostic biomarker associated with metastasis and CD8 + T cell infiltration in colorectal cancer. Front Oncol 2023; 12:1094612. [PMID: 36703779 PMCID: PMC9871988 DOI: 10.3389/fonc.2022.1094612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Colorectal cancer (CRC) is the second most common cause of cancer-related deaths worldwide. Tumor metastasis and CD8+ T cell infiltration play a crucial role in CRC patient survival. It is important to determine the etiology and mechanism of the malignant progression of CRC to develop more effective treatment strategies. Methods We conducted weighted gene co-expression network analysis (WGCNA) to explore vital modules of tumor metastasis and CD8+ T cell infiltration, then with hub gene selection and survival analysis. Multi-omics analysis is used to explore the expression pattern, immunity, and prognostic effect of MXRA8. The molecular and immune characteristics of MXRA8 are analyzed in independent cohorts, clinical specimens, and in vitro. Results MXRA8 expression was strongly correlated with tumor malignancy, metastasis, recurrence, and immunosuppressive microenvironment. Furthermore, MXRA8 expression predicts poor prognosis and is an independent prognostic factor for OS in CRC. Conclusion MXRA8 may be a potential immunotherapeutic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Lulu Tan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Lin Wang, ; Zheng Wang,
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Lin Wang, ; Zheng Wang,
| |
Collapse
|
13
|
Metabolic guidance and stress in tumors modulate antigen-presenting cells. Oncogenesis 2022; 11:62. [PMID: 36244976 PMCID: PMC9573874 DOI: 10.1038/s41389-022-00438-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Successful antitumor immunity largely relies on efficient T cell priming by antigen-presenting cells (APCs); however, the capacity of APCs is found to be defective in many cancers. Metabolically reprogrammed cancer cells support the energetic and biosynthetic demands of their high proliferation rates by exploiting nutrients available in the tumor microenvironment (TME), which in turn limits proper metabolic reprogramming of APCs during recruitment, differentiation, activation and antigen presentation. Furthermore, some metabolites generated by the TME are unfavorable to antitumor immunity. This review summarizes recent studies on the metabolic features of APCs and their functionality in the TME. Particularly, we will describe how APCs respond to altered TME and how metabolic byproducts from cancer and immunomodulatory cells affect APCs. Finally, we introduce the current status of APC-oriented research and clinical trials targeting metabolic features to boost efficient immunotherapy.
Collapse
|
14
|
Pouliquen DL, Boissard A, Henry C, Coqueret O, Guette C. Curcuminoids as Modulators of EMT in Invasive Cancers: A Review of Molecular Targets With the Contribution of Malignant Mesothelioma Studies. Front Pharmacol 2022; 13:934534. [PMID: 35873564 PMCID: PMC9304619 DOI: 10.3389/fphar.2022.934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Curcuminoids, which include natural acyclic diarylheptanoids and the synthetic analogs of curcumin, have considerable potential for fighting against all the characteristics of invasive cancers. The epithelial-to-mesenchymal transition (EMT) is a fundamental process for embryonic morphogenesis, however, the last decade has confirmed it orchestrates many features of cancer invasiveness, such as tumor cell stemness, metabolic rewiring, and drug resistance. A wealth of studies has revealed EMT in cancer is in fact driven by an increasing number of parameters, and thus understanding its complexity has now become a cornerstone for defining future therapeutic strategies dealing with cancer progression and metastasis. A specificity of curcuminoids is their ability to target multiple molecular targets, modulate several signaling pathways, modify tumor microenvironments and enhance the host’s immune response. Although the effects of curcumin on these various parameters have been the subject of many reviews, the role of curcuminoids against EMT in the context of cancer have never been reviewed so far. This review first provides an updated overview of all EMT drivers, including signaling pathways, transcription factors, non-coding RNAs (ncRNAs) and tumor microenvironment components, with a special focus on the most recent findings. Secondly, for each of these drivers the effects of curcumin/curcuminoids on specific molecular targets are analyzed. Finally, we address some common findings observed between data reported in the literature and the results of investigations we conducted on experimental malignant mesothelioma, a model of invasive cancer representing a useful tool for studies on EMT and cancer.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
- *Correspondence: Daniel L. Pouliquen,
| | - Alice Boissard
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Cécile Henry
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Olivier Coqueret
- Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| | - Catherine Guette
- ICO, Inserm, CNRS, Nantes Université, CRCI2NA, Université d’Angers, Angers, France
| |
Collapse
|