1
|
Castelli L, Camazzola G, Fuss MC, Boscolo D, Krämer M, Tozzini V, Durante M, Scifoni E. Probing Spatiotemporal Effects of Intertrack Recombination with a New Implementation of Simultaneous Multiple Tracks in TRAX-CHEM. Int J Mol Sci 2025; 26:571. [PMID: 39859287 PMCID: PMC11765274 DOI: 10.3390/ijms26020571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances. We analyzed the yields of different radicals as compared to the non-interacting track conditions and we evaluated the difference. We find a negligible role of intertrack for spatial distances larger than 1 μm, while for temporal distances up to μs, a non-negligible interaction is observed especially at higher LET. In addition, we emphasize the non-monotonic behavior of some relative yield as a function of the time separation, in particular of H2O2, due to the onset of a different reaction involving solvated electrons besides well-known OH· recombination.
Collapse
Affiliation(s)
- Lorenzo Castelli
- Department of Physics, University of Trento, 38121 Trento, Italy;
- Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy
- Istituto Nanoscienze-CNR, NEST-SNS, 56127 Pisa, Italy
| | - Gianmarco Camazzola
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Martina C. Fuss
- Department of Medical Physics, MedAustron, 2700 Wiener Neustadt, Austria
| | - Daria Boscolo
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Michael Krämer
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Valentina Tozzini
- Istituto Nanoscienze-CNR, NEST-SNS, 56127 Pisa, Italy
- INFN, 56127 Pisa, Italy
| | - Marco Durante
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy
| |
Collapse
|
2
|
Hu A, Zhou W, Qiu R, Li J. Mathematical analysis of FLASH effect models based on theoretical hypotheses. Phys Med Biol 2024; 69:245005. [PMID: 38981588 DOI: 10.1088/1361-6560/ad612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Objective.Clinical applications of FLASH radiotherapy require formulas to describe how the FLASH radiation features and other related factors determine the FLASH effect. Mathematical analysis of the models can connect the theoretical hypotheses with the radiobiological effect, which provides the foundation for establishing clinical application models. Moreover, experimental and clinical data can be used to explore the key factors through mathematical analysis.Approach.We abstract the complex models of the oxygen depletion hypothesis and radical recombination-antioxidants hypothesis into concise mathematical equations. The equations are solved to analyze how the radiation features and other factors influence the FLASH effect. Then we propose methodologies for determining the parameters in the models and utilizing the models to predict the FLASH effect.Main results.The formulas linking the physical, chemical and biological factors to the FLASH effect are obtained through mathematical derivation of the equation. The analysis indicates that the initial oxygen concentration, radiolytic oxygen consumption and oxygen recovery are key factors for the oxygen depletion hypothesis and that the level of antioxidants is the key factor for the radical recombination-antioxidants hypothesis. According to the model derivations and analysis, the methodologies for determining parameters and predicting the FLASH effect are proposed: (1) the criteria for data filtration, (2) the strategy of hybrid FLASH and conventional dose rate (CONV) irradiation to ensure the acquisition of effective experimental data across a wide dose range, (3) the pipelines of fitting parameters and predicting the FLASH effect.Significance.This study establishes the quantitative relationship between the FLASH effect and key factors. The derived formulas can be used to calculate the FLASH effect in future clinical FLASH radiotherapy. The proposed methodologies guide to obtain sufficient high-quality datasets and utilize them to predict the FLASH effect. Furthermore, this study indicates the key factors of the FLASH effect and offers clues to further explore the FLASH mechanism.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| | - Wanyi Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
3
|
Sørensen BS, Kanouta E, Ankjærgaard C, Kristensen L, Johansen JG, Sitarz MK, Andersen CE, Grau C, Poulsen P. Proton FLASH: Impact of Dose Rate and Split Dose on Acute Skin Toxicity in a Murine Model. Int J Radiat Oncol Biol Phys 2024; 120:265-275. [PMID: 38750904 DOI: 10.1016/j.ijrobp.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Poulsen PR, Johansen JG, Sitarz MK, Kanouta E, Kristensen L, Grau C, Sørensen BS. Oxygen Enhancement Ratio-Weighted Dose Quantitatively Describes Acute Skin Toxicity Variations in Mice After Pencil Beam Scanning Proton FLASH Irradiation With Changing Doses and Time Structures. Int J Radiat Oncol Biol Phys 2024; 120:276-286. [PMID: 38462015 DOI: 10.1016/j.ijrobp.2024.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE The aim of this work was to investigate the ability of a biological oxygen enhancement ratio-weighted dose, DOER, to describe acute skin toxicity variations observed in mice after proton pencil beam scanning irradiations with changing doses and beam time structures. METHODS AND MATERIALS In five independent experiments, the right hind leg of a total of 621 CDF1 mice was irradiated previously in the entrance plateau of a pencil beam scanning proton beam. The incidence of acute skin toxicity (of level 1.5-2.0-2.5-3.0-3.5) was scored for 47 different mouse groups that mapped toxicity as function of dose for conventional and FLASH dose rate, toxicity as function of field dose rate with and without repainting, and toxicity when splitting the treatment into 1 to 6 identical deliveries separated by 2 minutes. DOER was calculated for all mouse groups using a simple oxygen kinetics model to describe oxygen depletion. The three independent model parameters (oxygen-depletion rate, oxygen-recovery rate, oxygen level without irradiation) were fitted to the experimental data. The ability of DOER to describe the toxicity variations across all experiments was investigated by comparing DOER-response curves across the five independent experiments. RESULTS After conversion from the independent variable tested in each experiment to DOER, all five experiments had similar MDDOER50 (DOER giving 50% toxicity incidence) with standard deviations of 0.45 - 1.6 Gy for the five toxicity levels. DOER could thus describe the observed toxicity variations across all experiments. CONCLUSIONS DOER described the varying FLASH-sparing effect observed for a wide range of conditions. Calculation of DOER for other irradiation conditions can quantitatively estimate the FLASH-sparing effect for arbitrary irradiations for the investigated murine model. With appropriate fitting parameters DOER also may be able to describe FLASH effect variations with dose and dose rate for other assays and endpoints.
Collapse
Affiliation(s)
- Per Rugaard Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Jacob Graversen Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Held KD, McNamara AL, Daartz J, Bhagwat MS, Rothwell B, Schuemann J. Dose Rate Effects from the 1950s through to the Era of FLASH. Radiat Res 2024; 202:161-176. [PMID: 38954556 PMCID: PMC11426361 DOI: 10.1667/rade-24-00024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
- National Council on Radiation Protection and Measurements, Bethesda, Maryland 20814
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Mandar S Bhagwat
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Bethany Rothwell
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
6
|
Wanstall HC, Korysko P, Farabolini W, Corsini R, Bateman JJ, Rieker V, Hemming A, Henthorn NT, Merchant MJ, Santina E, Chadwick AL, Robertson C, Malyzhenkov A, Jones RM. VHEE FLASH sparing effect measured at CLEAR, CERN with DNA damage of pBR322 plasmid as a biological endpoint. Sci Rep 2024; 14:14803. [PMID: 38926450 PMCID: PMC11208499 DOI: 10.1038/s41598-024-65055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as 'FLASH'. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.08 Gy/s), intermediate (96 Gy/s) and ultra-high dose rates (UHDR, (2 × 109 Gy/s) at the CERN Linear Electron Accelerator (CLEAR) user facility. UHDRs were used to determine if the biological FLASH effect could be measured in the plasmid model, within a hydroxyl scavenging environment. Two different concentrations of the hydroxyl radical scavenger Tris were used in the plasmid environment to alter the proportions of indirect damage, and to replicate a cellular scavenging capacity. Indirect damage refers to the interaction of ionising radiation with molecules and species to generate reactive species which can then attack DNA. UHDR irradiated plasmid was shown to have significantly reduced amounts of damage in comparison to conventionally irradiated, where single strand breaks (SSBs) was used as the biological endpoint. This was the case for both hydroxyl scavenging capacities. A reduced electron energy within the VHEE range was also determined to increase the DNA damage to pBR322 plasmid. Results indicate that the pBR322 plasmid model can be successfully used to explore and test the effect of UHDR regimes on DNA damage. This is the first study to report FLASH sparing with VHEE, with induced damage to pBR322 plasmid DNA as the biological endpoint. UHDR irradiated plasmid had reduced amounts of DNA single-strand breaks (SSBs) in comparison with conventional dose rates. The magnitude of the FLASH sparing was a 27% reduction in SSB frequency in a 10 mM Tris environment and a 16% reduction in a 100 mM Tris environment.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK.
| | - Pierre Korysko
- University of Oxford, Oxford, OX1 2JD, UK
- CERN, Geneva, 1211, Geneva 23, Switzerland
| | | | | | | | - Vilde Rieker
- CERN, Geneva, 1211, Geneva 23, Switzerland
- University of Oslo, 0316, Oslo, Norway
| | - Abigail Hemming
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Nicholas T Henthorn
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | | | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK
| |
Collapse
|
7
|
Taylor E, Létourneau D. How quickly does FLASH need to be delivered? A theoretical study of radiolytic oxygen depletion kinetics in tissues. Phys Med Biol 2024; 69:115008. [PMID: 38608644 DOI: 10.1088/1361-6560/ad3e5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Purpose. Radiation delivered over ultra-short timescales ('FLASH' radiotherapy) leads to a reduction in normal tissue toxicities for a range of tissues in the preclinical setting. Experiments have shown this reduction occurs for total delivery times less than a 'critical' time that varies by two orders of magnitude between brain (∼0.3 s) and skin (⪆10 s), and three orders of magnitude across different bowel experiments, from ∼0.01 to ⪆(1-10) s. Understanding the factors responsible for this broad variation may be important for translation of FLASH into the clinic and understanding the mechanisms behind FLASH.Methods.Assuming radiolytic oxygen depletion (ROD) to be the primary driver of FLASH effects, oxygen diffusion, consumption, and ROD were evaluated numerically for simulated tissues with pseudorandom vasculatures for a range of radiation delivery times, capillary densities, and oxygen consumption rates (OCR's). The resulting time-dependent oxygen partial pressure distribution histograms were used to estimate cell survival in these tissues using the linear quadratic model, modified to incorporate oxygen-enhancement ratio effects.Results. Independent of the capillary density, there was a substantial increase in predicted cell survival when the total delivery time was less than the capillary oxygen tension (mmHg) divided by the OCR (expressed in units of mmHg/s), setting the critical delivery time for FLASH in simulated tissues. Using literature OCR values for different normal tissues, the predicted range of critical delivery times agreed well with experimental values for skin and brain and, modifying our model to allow for fluctuating perfusion, bowel.Conclusions. The broad three-orders-of-magnitude variation in critical irradiation delivery times observed inin vivopreclinical experiments can be accounted for by the ROD hypothesis and differences in the OCR amongst simulated normal tissues. Characterization of these may help guide future experiments and open the door to optimized tissue-specific clinical protocols.
Collapse
Affiliation(s)
- Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Hu S, Lan X, Zheng J, Bi Y, Ye Y, Si M, Fang Y, Wang J, Liu J, Chen Y, Chen Y, Xiang P, Niu T, Huang Y. The dose-related plateau effect of surviving fraction in normal tissue during the ultra-high-dose-rate radiotherapy. Phys Med Biol 2023; 68:185004. [PMID: 37586385 DOI: 10.1088/1361-6560/acf112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Objective.Ultra-high-dose-rate radiotherapy, referred to as FLASH therapy, has been demonstrated to reduce the damage of normal tissue as well as inhibiting tumor growth compared with conventional dose-rate radiotherapy. The transient hypoxia may be a vital explanation for sparing the normal tissue. The heterogeneity of oxygen distribution for different doses and dose rates in the different radiotherapy schemes are analyzed. With these results, the influence of doses and dose rates on cell survival are evaluated in this work.Approach.The two-dimensional reaction-diffusion equations are used to describe the heterogeneity of the oxygen distribution in capillaries and tissue. A modified linear quadratic model is employed to characterize the surviving fraction at different doses and dose rates.Main results.The reduction of the damage to the normal tissue can be observed if the doses exceeds a minimum dose threshold under the ultra-high-dose-rate radiation. Also, the surviving fraction exhibits the 'plateau effect' under the ultra-high dose rates radiation, which signifies that within a specific range of doses, the surviving fraction either exhibits minimal variation or increases with the dose. For a given dose, the surviving fraction increases with the dose rate until tending to a stable value, which means that the protection in normal tissue reaches saturation.Significance.The emergence of the 'plateau effect' allows delivering the higher doses while minimizing damage to normal tissue. It is necessary to develop appropriate program of doses and dose rates for different irradiated tissue to achieve more efficient protection.
Collapse
Affiliation(s)
- Shuai Hu
- School of Physics and Astronomy, China West Normal University, Nanchong 637009, People's Republic of China
- School of Science, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Xiaofei Lan
- School of Physics and Astronomy, China West Normal University, Nanchong 637009, People's Republic of China
| | - Jinfen Zheng
- Dermatology, Center for Chronic Disease Prevention of Shenzhen, Guangdong Shenzhen 518020, People's Republic of China
| | - Yuanjie Bi
- School of Science, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Yuanchun Ye
- Department of Hematology, Oncology and Cancer Immunology Campus Benjamin Franklin Charité-Universitätsmedizin Berlin Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Hindenburgdamm, 30,12203, Berlin Germany
| | - Meiyu Si
- School of Science, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuhong Fang
- School of Science, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Jinghui Wang
- Varian Medical Systems, Palo Alto, CA 94304, United States of America
| | - Junyan Liu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94304, United States of America
| | - Yuan Chen
- The Institute for Advanced Studies of Wuhan University, 299, Bayi Road, Wuhan, 430072, People's Republic of China
| | - Yuling Chen
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Pai Xiang
- The Institute for Advanced Studies of Wuhan University, 299, Bayi Road, Wuhan, 430072, People's Republic of China
| | - Tianye Niu
- Shenzhen Bay Laboratory, Shenzhen 518107, People's Republic of China
| | - Yongsheng Huang
- School of Science, Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Mali SB, Dahivelkar S. Flash radiotherapy-gateway to promised land or another mirage. Oral Oncol 2023; 139:106342. [PMID: 36821983 DOI: 10.1016/j.oraloncology.2023.106342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Radiation therapy damages cancer cells with ionizing radiation, leading to their death. However, radiation‑induced toxicity limits the dose delivered to the tumor, thereby constraining the control effect of radiotherapy n tumor growth. In addition, the delayed toxicity caused by radiotherapy significantly harms the physical and mental health of patients. FLASH‑RT, an emerging class of radiotherapy, causes a phenomenon known as the 'FLASH effect', which delivers radiotherapy at an ultra‑high dose rate with lower toxicity to normal tissue than conventional radiotherapy to achieve local tumor control.
Collapse
Affiliation(s)
- Shrikant B Mali
- MDS Oral and Maxillofacial Surgery Mahatma Gandhi Vidya Mandir's Dental College and Hospital Nashik, India.
| | - Sachinkumar Dahivelkar
- MDS Oral and Maxillofacial Surgery Mahatma Gandhi Vidya Mandir's Dental College and Hospital Nashik, India.
| |
Collapse
|