1
|
Feng J, Chen Z, Wang Y, Liu Y, Zhao D, Gu X. Identification of chromatin remodeling-related gene signature to predict the prognosis in breast cancer. Clin Exp Med 2025; 25:137. [PMID: 40317384 PMCID: PMC12049336 DOI: 10.1007/s10238-025-01661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 05/07/2025]
Abstract
Growing evidence highlights the critical role of chromatin remodeling in tumor development and progression. This study explores the relationship between chromatin remodeling-related genes (CRRGs) and breast cancer (BRCA). Public databases were used to retrieve the TCGA-BRCA and GSE20685 datasets. CRRGs were sourced from prior studies. Prognosis-associated CRRGs were identified using univariate Cox regression analysis. TCGA-BRCA BRCA samples were grouped into CRRG-related subtypes through consensus clustering analysis. Differential expression analysis was conducted in TCGA-BRCA (BRAC vs. control) and among subtypes to identify differentially expressed genes (DEGs). Candidate genes were obtained through the intersection of these DEGs. Prognostic genes were selected using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Independent prognostic factors were identified, and a nomogram model was developed. Functional enrichment, immune infiltration, clinical relevance, and drug sensitivity analyses were subsequently performed. TCGA-BRCA BRCA samples were classified into two CRRG-related subtypes (clusters 1 and 2) based on prognosis-associated CRRGs. A total of 141 candidate genes were identified by intersecting 250 DEGs (cluster 1 vs. cluster 2) with 3,145 DEGs (BRCA vs. control). Five prognostic genes-LHX5, ZP2, GABRQ, APOA2, and CLCNKB-were selected, and a prognostic risk model was developed. In clinical samples, APOA2 (P = 0.0290) and GABRQ (P = 0.0132) expression were significantly up-regulated, CLCNKB (P < 0.0001) and ZP2 (P = 0.0445) expression were significantly down-regulated, while LHX5 (P = 0.1508) expression did not present a significant difference. A nomogram was created, and calibration and Receiver Operating Characteristic (ROC) curves demonstrated its superior predictive ability for BRCA. Gene Set Variation Analysis (GSVA) revealed 16 pathways, such as "mTORC1 signaling" and "E2F targets," were enriched in the high-risk group, while 9 pathways, including "estrogen response early" and "myogenesis," were enriched in the low-risk group. Additionally, significant differences in immune cell types, including CD8+ T cells and follicular helper T cells, were observed between the two risk groups. The risk score was also significantly associated with six drugs, including AZD1332 1463 and SB505124 1194. This study presents a prognostic model based on five genes (LHX5, ZP2, GABRQ, APOA2, and CLCNKB) for BRCA, offering a novel perspective on the link between CRRGs and BRCA.
Collapse
Affiliation(s)
- Jing Feng
- Department of Breast Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhiqiang Chen
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yu Wang
- Department of Breast Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | | | - Danni Zhao
- Shanxi Medical University, Taiyuan, China
| | - Xiaodong Gu
- Department of Breast Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Li Y, Bai L, Liang H, Yan P, Chen H, Cao Z, Shen Y, Wang Z, Huang M, He B, Hao Q, Mei Y, Wei H, Ding C, Jin J, Wang Y. A BPTF-specific PROTAC degrader enhances NK cell-based cancer immunotherapy. Mol Ther 2025; 33:1566-1583. [PMID: 39935175 PMCID: PMC11997503 DOI: 10.1016/j.ymthe.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Natural killer (NK) cell-based immunotherapy shows promise in cancer treatment, but its efficacy remains limited, necessitating the development of novel strategies. In this study, we demonstrate that the epigenetic factor bromodomain PHD-finger containing transcription factor (BPTF) hinders hepatocellular carcinoma (HCC) recognition by NK cells through its PHD finger's interpretation of H3K4me3. We have generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degrades human and murine BPTF. The degradation of BPTF using PROTACs directly enhances the abundance of natural cytotoxicity receptor ligands on HCC cells, facilitating their recognition by NK cells and thereby augmenting NK cell cytotoxicity against HCC both in vitro and in vivo. Through multidisciplinary techniques, our findings establish targeting BPTF with PROTACs as a promising approach to overcome immune evasion of HCC from NK cells and provide a new strategy to enhance NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lin Bai
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Hao Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Peidong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhuoxian Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yiqing Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongyv Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yide Mei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haiming Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Pan Y, Yuan F, Lin Z, Li Y. BPTF promotes glioma development through USP34-mediated de-ubiquitination of FOXC1. Histol Histopathol 2025; 40:205-214. [PMID: 38686761 DOI: 10.14670/hh-18-748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Glioma is the most prevalent malignant tumor of the brain, and the study of the molecular mechanisms associated with its development has important clinical significance. Our previous study found that BPTF promotes the malignant phenotype of glioma and is significantly associated with poor prognosis; the downstream regulatory mechanisms are explored in this study. Western blot and immunohistochemical staining were used to detect protein expression in cells or tissues. BPTF knockdown as well as FOXC1-overexpressing lentiviruses were used in combination for the construction of the U251 cell model, leading to functional rescue experiments. CCK8 assay, flow cytometry, scratch assay, and Transwell assay were used to detect cell proliferation, apoptosis, and migration, respectively. Finally, immunoprecipitation assays, combined with western blot (WB), were used to detect the interaction between proteins as well as the level of ubiquitination modification. The obtained results suggested that BPTF knockdown may inhibit the malignant behavior of glioma cells by downregulating FOXC1 expression. Moreover, FOXC1 expression was significantly higher in glioma tissues than in normal brain tissues and was significantly associated with higher tumor stage and worse patient prognosis. Finally, the mechanism of FOXC1 regulation by BPTF was found to result from the affected protein stability of FOXC1 through USP34-mediated de-ubiquitylation. In conclusion, the BPTF/FOXC1 axis was identified as a key promotor in glioma development and may be a potential target in the inhibition of glioma development.
Collapse
Affiliation(s)
- Yanling Pan
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Feng Yuan
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Zhiren Lin
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China
| | - Yijie Li
- Department of Radiotherapy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, PR China.
| |
Collapse
|
4
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
5
|
Sinanian MM, Rahman A, Elshazly AM, Neely V, Nagarajan B, Kellogg GE, Risinger AL, Gewirtz DA. A BPTF Inhibitor That Interferes with the Multidrug Resistance Pump to Sensitize Murine Triple-Negative Breast Cancer Cells to Chemotherapy. Int J Mol Sci 2024; 25:11346. [PMID: 39518898 PMCID: PMC11545213 DOI: 10.3390/ijms252111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a generally poor prognosis due to its highly aggressive and metastatic nature, lack of targetable receptors, as well as the frequent development of resistance to chemotherapy. We previously reported that AU1, a small molecule developed as an inhibitor of BPTF (bromodomain PHD finger-containing transcription factor), was capable of sensitizing preclinical models of TNBC to chemotherapy in part via the promotion of autophagy. In studies reported here, we identify an additional property of this compound, specifically that sensitization is associated with the inhibition of the P-glycoprotein (P-gp) efflux pump. In silico molecular docking studies indicate that AU1 binds to active regions of the efflux pump in a manner consistent with the inhibition of the pump function. This work identifies a novel chemical structure that can influence multidrug efflux, an established mechanism of drug resistance in TNBC, that has not yet been successfully addressed by clinical efforts.
Collapse
Affiliation(s)
- Melanie M. Sinanian
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| | - Afshan Rahman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Victoria Neely
- Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.N.); (G.E.K.)
| | - Glen E. Kellogg
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.N.); (G.E.K.)
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; (M.M.S.); (A.R.); (A.M.E.)
| |
Collapse
|
6
|
Yogev Y, Schaffer M, Shlapobersky M, Jean MM, Wormser O, Drabkin M, Halperin D, Kassem R, Livoff A, Tsitrina AA, Asna N, Birk OS. A role of BPTF in viral oncogenicity delineated through studies of heritable Kaposi sarcoma. J Med Virol 2024; 96:e29436. [PMID: 38380509 DOI: 10.1002/jmv.29436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Kaposi sarcoma (KS), caused by Herpesvirus-8 (HHV-8; KSHV), shows sporadic, endemic, and epidemic forms. While familial clustering of KS was previously recorded, the molecular basis of hereditary predilection to KS remains largely unknown. We demonstrate through genetic studies that a dominantly inherited missense mutation in BPTF segregates with a phenotype of classical KS in multiple immunocompetent individuals in two families. Using an rKSHV.219-infected CRISPR/cas9-model, we show that BPTFI2012T mutant cells exhibit higher latent-to-lytic ratio, decreased virion production, increased LANA staining, and latent phenotype in viral transcriptomics. RNA-sequencing demonstrated that KSHV infection dysregulated oncogenic-like response and P53 pathways, MAPK cascade, and blood vessel development pathways, consistent with KS. BPTFI2012T also enriched pathways of viral genome regulation and replication, immune response, and chemotaxis, including downregulation of IFI16, SHFL HLAs, TGFB1, and HSPA5, all previously associated with KSHV infection and tumorigenesis. Many of the differentially expressed genes are regulated by Rel-NF-κB, which regulates immune processes, cell survival, and proliferation and is pivotal to oncogenesis. We thus demonstrate BPTF mutation-mediated monogenic hereditary predilection of KSHV virus-induced oncogenesis, and suggest BPTF as a drug target.
Collapse
Affiliation(s)
- Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moshe Schaffer
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Mark Shlapobersky
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Matan M Jean
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Riad Kassem
- Department of Dermatology, Sheba Medical Center, Ramat Gan, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Livoff
- Department of Pathology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Department of Pathology, Galilee Medical Center, and The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Alexandra A Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noam Asna
- Department of Oncology, Barzilai University Medical Center, Ashkelon, and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Warstat R, Pervaiz M, Regenass P, Amann M, Schmidtkunz K, Einsle O, Jung M, Breit B, Hügle M, Günther S. A novel pan-selective bromodomain inhibitor for epigenetic drug design. Eur J Med Chem 2023; 249:115139. [PMID: 36736153 DOI: 10.1016/j.ejmech.2023.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
For a long time, the development of bromodomain (BD) inhibitors (BDi) was almost exclusively related to the BET family. More recently, BDi for BDs outside the BET family have also been developed. Here we present a novel pan-BDi with micromolar affinities to various BDs, and nanomolar affinities to representatives of BD families I, II (Bromodomain and Extra-Terminal Domain (BET) family), III, and IV. The inhibitor shows a broad activity profile with nanomolar growth inhibition (GI50) values on various cancer cell lines. Subsequently, we were able to control the selectivity of the inhibitor by simple modifications and turned it into a highly selective BRD9 inhibitor.
Collapse
Affiliation(s)
- Robin Warstat
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Mehrosh Pervaiz
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany
| | - Pierre Regenass
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Marius Amann
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Karin Schmidtkunz
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D-79104, Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany
| | - Martin Hügle
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, D-79104, Freiburg, Germany.
| | - Stefan Günther
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, D-79104, Freiburg, Germany
| |
Collapse
|
8
|
Dual Targeting of EGFR and MTOR Pathways Inhibits Glioblastoma Growth by Modulating the Tumor Microenvironment. Cells 2023; 12:cells12040547. [PMID: 36831214 PMCID: PMC9954001 DOI: 10.3390/cells12040547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Glioblastoma's (GBM) aggressive growth is driven by redundant activation of a myriad of signaling pathways and genomic alterations in tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), which is altered in over 50% of cases. Single agents targeting EGFR have not proven effective against GBM. In this study, we aimed to identify an effective anti-tumor regimen using pharmacogenomic testing of patient-derived GBM samples, in culture and in vivo. High-throughput pharmacological screens of ten EGFR-driven GBM samples identified the combination of erlotinib (EGFRi) and MLN0128 (a mammalian target of rapamycin inhibitor, or MTORi) as the most effective at inhibiting tumor cell viability. The anti-tumor activity of erlonitib+MLN0128 was synergistic and produced inhibition of the p-EGFR, mitogen-activated protein kinase (MAPK), and Phosphoinositide 3-kinase (PI3K) pathways in culture. Using an orthotopic murine model of GBM, we show that erlotinib+MLN0128 inhibited tumor growth in vivo and significantly prolonged the survival of tumor-bearing mice. Expression profiling of tumor tissues from treated mice revealed a unique gene signature induced by erlotinib+MLN0128, consisting of downregulation of immunosuppressive chemokines in the tumor microenvironment, including C-C motif chemokine ligand 2 (CCL2) and periostin. Lower periostin levels resulted in the inhibition of Iba1+ (tumor-promoting) macrophage infiltration of GBM xenografts. Taken together, our results demonstrate that pharmacological co-targeting of EGFR and MTOR using clinically available drugs represents an effective treatment paradigm for EGFR-driven GBMs, acting both by inhibiting tumor cell growth and modulating the immune tumor microenvironment.
Collapse
|