1
|
Englisch JF, Englisch A, Dannehl D, Eissler K, Tegeler CM, Matovina S, Volmer LL, Wallwiener D, Brucker SY, Hartkopf A, Engler T. Impact of obesity on pathological complete remission in early stage breast cancer patients after neoadjuvant chemotherapy: a retrospective study from a German University breast center. Arch Gynecol Obstet 2025; 311:437-442. [PMID: 39466403 PMCID: PMC11890308 DOI: 10.1007/s00404-024-07786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE Breast cancer is a primary cause of cancer-related death among women worldwide. Neoadjuvant chemotherapy (NACT) is a cornerstone treatment for locally advanced, non-metastatic breast cancer. Achieving pathological complete response (pCR) is often used as a surrogate marker for long-term outcomes. This study examines the impact of obesity, defined by a body mass index (BMI) over 30 kg/m2, on achieving pCR in patients with early stage breast cancer (eBC) undergoing NACT. METHODS A retrospective analysis was conducted on patients with eBC treated with NACT at the University of Tübingen. The primary objective was to assess the impact of obesity on achieving pCR. Logistic regression analysis was used to determine the association between pre-treatment BMI and pCR, adjusting for covariates such as age, tumor stage, grading, and chemotherapy intensity. RESULTS The study included 325 patients, with 24% classified as obese. While the univariate logistic regression analysis showed no significant impact of obesity on the odds ratio of achieving pCR, the multivariate analysis, accounting for covariates, demonstrated that obese patients had a significantly higher likelihood of achieving pCR. CONCLUSION In this retrospective study, obesity significantly affected the likelihood of achieving pCR in patients with eBC cancer undergoing NACT after adjusting for covariates. While obesity is a known risk factor for breast cancer development and progression, its impact on the efficacy of NACT in terms of achieving pCR was positive in our study. These findings contribute to the ongoing debate in the literature, though the retrospective design and potential uncontrolled factors should be considered.
Collapse
Affiliation(s)
| | - Alexander Englisch
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| | - Dominik Dannehl
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| | - Kenneth Eissler
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| | | | - Sabine Matovina
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| | - Léa Louise Volmer
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| | | | - Sara Y Brucker
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| | - Andreas Hartkopf
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| | - Tobias Engler
- Department of Women's Health, Tübingen University, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Mungra N, Nsole Biteghe FA, Huysamen AM, Hardcastle NS, Bunjun R, Naran K, Lang D, Richter W, Hunter R, Barth S. An Investigation into the In Vitro Targeted Killing of CD44-Expressing Triple-Negative Breast Cancer Cells Using Recombinant Photoimmunotherapeutics Compared to Auristatin-F-Based Antibody-Drug Conjugates. Mol Pharm 2024; 21:4098-4115. [PMID: 39047292 DOI: 10.1021/acs.molpharmaceut.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer with limited treatment options. The persistence of highly tumorigenic CD44-expressing subpopulation referred to as cancer stem cells (CSCs), endowed with the self-renewal capacity, has been associated with therapeutic resistance, hence clinical relapses. To mitigate these undesired events, targeted immunotherapies using antibody-photoconjugate (APC) or antibody-drug conjugate (ADC), were developed to specifically release cytotoxic payloads within targeted cells overexpressing cognate antigen receptors. Therefore, an αCD44(scFv)-SNAP-tag antibody fusion protein was engineered through genetic fusion of a single-chain antibody fragment (scFv) to a SNAPf-tag fusion protein, capable of self-conjugating with benzylguanine-modified light-sensitive near-infrared (NIR) phthalocyanine dye IRDye700DX (BG-IR700) or the small molecule toxin auristatin-F (BG-AURIF). Binding of the αCD44(scFv)-SNAPf-IR700 photoimmunoconjugate to antigen-positive cells was demonstrated by confocal microscopy and flow cytometry. By switching to NIR irradiation, CD44-expressing TNBC was selectively killed through induced phototoxic activities. Likewise, the αCD44(scFv)-SNAPf-AURIF immunoconjugate was able to selectively accumulate within targeted cells and significantly reduced cell viability through antimitotic activities at nano- to micromolar drug concentrations. This study provides an in vitro proof-of-concept for a future strategy to selectively destroy light-accessible superficial CD44-expressing TNBC tumors and their metastatic lesions which are inaccessible to therapeutic light.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Centre for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington 98101, United States
| | - Fleury A Nsole Biteghe
- College of Science, Department of Biotechnology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Allan M Huysamen
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Natasha S Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | - Roger Hunter
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
4
|
Manoochehri H, Farrokhnia M, Sheykhhasan M, Mahaki H, Tanzadehpanah H. Key target genes related to anti-breast cancer activity of ATRA: A network pharmacology, molecular docking and experimental investigation. Heliyon 2024; 10:e34300. [PMID: 39108872 PMCID: PMC11301165 DOI: 10.1016/j.heliyon.2024.e34300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 01/07/2025] Open
Abstract
All-trans retinoic acid (ATRA) has promising activity against breast cancer. However, the exact mechanisms of ATRA's anticancer effects remain complex and not fully understood. In this study, a network pharmacology and molecular docking approach was applied to identify key target genes related to ATRA's anti-breast cancer activity. Gene/disease enrichment analysis for predicted ATRA targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), the Comparative Toxicogenomics Database (CTD), and the Gene Set Cancer Analysis (GSCA) database. Protein-Protein Interaction Network (PPIN) generation and analysis was conducted via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and cytoscape, respectively. Cancer-associated genes were evaluated using MyGeneVenn from the CTD. Differential expression analysis was conducted using the Tumor, Normal, and Metastatic (TNM) Plot tool and the Human Protein Atlas (HPA). The Glide docking program was used to predict ligand-protein binding. Treatment response predication and clinical profile assessment were performed using Receiver Operating Characteristic (ROC) Plotter and OncoDB databases, respectively. Cytotoxicity and gene expression were measured using MTT/fluorescent assays and Real-Time PCR, respectively. Molecular functions of ATRA targets (n = 209) included eicosanoid receptor activity and transcription factor activity. Some enriched pathways included inclusion body myositis and nuclear receptors pathways. Network analysis revealed 35 hub genes contributing to 3 modules, with 16 of them were associated with breast cancer. These genes were involved in apoptosis, cell cycle, androgen receptor pathway, and ESR-mediated signaling, among others. CCND1, ESR1, MMP9, MDM2, NCOA3, and RARA were significantly overexpressed in tumor samples. ATRA showed a high affinity towards CCND1/CDK4 and MMP9. CCND1, ESR1, and MDM2 were associated with poor treatment response and were downregulated after treatment of the breast cancer cell line with ATRA. CCND1 and ESR1 exhibited differential expression across breast cancer stages. Therefore, some part of ATRA's anti-breast cancer activity may be exerted through the CCND1/CDK4 complex.
Collapse
Affiliation(s)
- Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Li F, Zhou X, Hu W, Du Y, Sun J, Wang Y. Prognostic predictive value of Ki-67 in stage I-II triple-negative breast cancer. Future Sci OA 2024; 10:FSO936. [PMID: 38827797 PMCID: PMC11140645 DOI: 10.2144/fsoa-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/06/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Our research aimed to determine an optimal cutoff value and investigate the prognostic predictive function of Ki-67. Materials & methods: We retrospectively enrolled 1146 patients diagnosed with stage I-II triple-negative breast cancer. Disease-free and overall survival were analyzed using the Kaplan-Meier method and the Cox regression model. Results: We classified Ki-67 >45% as the high group (n = 716). A Ki-67 level of >45% was associated with poorer disease-free survival (p = 0.039) and overall survival (p = 0.029). Lymph node stage, neoadjuvant chemotherapy, and radiotherapy were independent predictive variables of prognosis. Conclusion: Triple-negative breast cancer may be further subcategorized according to the Ki-67 level. Neoadjuvant chemotherapy and postoperative radiotherapy can improve the prognosis of early triple-negative breast cancer.
Collapse
Affiliation(s)
- Fengyan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xinhui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Wendie Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yujie Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Jiayuan Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yaxue Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
6
|
Alba-Bernal A, Godoy-Ortiz A, Domínguez-Recio ME, López-López E, Quirós-Ortega ME, Sánchez-Martín V, Roldán-Díaz MD, Jiménez-Rodríguez B, Peralta-Linero J, Bellagarza-García E, Troyano-Ramos L, Garrido-Ruiz G, Hierro-Martín MI, Vicioso L, González-Ortiz Á, Linares-Valencia N, Velasco-Suelto J, Carbajosa G, Garrido-Aranda A, Lavado-Valenzuela R, Álvarez M, Pascual J, Comino-Méndez I, Alba E. Increased blood draws for ultrasensitive ctDNA and CTCs detection in early breast cancer patients. NPJ Breast Cancer 2024; 10:36. [PMID: 38750090 PMCID: PMC11096188 DOI: 10.1038/s41523-024-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Early breast cancer patients often experience relapse due to residual disease after treatment. Liquid biopsy is a methodology capable of detecting tumor components in blood, but low concentrations at early stages pose challenges. To detect them, next-generation sequencing has promise but entails complex processes. Exploring larger blood volumes could overcome detection limitations. Herein, a total of 282 high-volume plasma and blood-cell samples were collected for dual ctDNA/CTCs detection using a single droplet-digital PCR assay per patient. ctDNA and/or CTCs were detected in 100% of pre-treatment samples. On the other hand, post-treatment positive samples exhibited a minimum variant allele frequency of 0.003% for ctDNA and minimum cell number of 0.069 CTCs/mL of blood, surpassing previous investigations. Accurate prediction of residual disease before surgery was achieved in patients without a complete pathological response. A model utilizing ctDNA dynamics achieved an area under the ROC curve of 0.92 for predicting response. We detected disease recurrence in blood in the three patients who experienced a relapse, anticipating clinical relapse by 34.61, 9.10, and 7.59 months. This methodology provides an easily implemented alternative for ultrasensitive residual disease detection in early breast cancer patients.
Collapse
Affiliation(s)
- Alfonso Alba-Bernal
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
| | - Ana Godoy-Ortiz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - María Emilia Domínguez-Recio
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Esperanza López-López
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - María Elena Quirós-Ortega
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
| | - Victoria Sánchez-Martín
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - María Dunia Roldán-Díaz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - Jesús Peralta-Linero
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Estefanía Bellagarza-García
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Laura Troyano-Ramos
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Guadalupe Garrido-Ruiz
- Radiology Department, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
| | - M Isabel Hierro-Martín
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Unidad de Gestion Clinica Provincial de Anatomia Patologica de Malaga, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Luis Vicioso
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Unidad de Gestion Clinica Provincial de Anatomia Patologica de Malaga, Hospital Clinico Universitario Virgen de la Victoria de Malaga, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Álvaro González-Ortiz
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
| | - Noelia Linares-Valencia
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Jesús Velasco-Suelto
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Guillermo Carbajosa
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| | - Alicia Garrido-Aranda
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Rocío Lavado-Valenzuela
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Martina Álvarez
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
- Laboratorio de biologia molecular del cancer (LBMC), Centro de investigaciones medico-sanitarias (CIMES-UMA), 29010, Malaga, Spain
| | - Javier Pascual
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
| | - Iñaki Comino-Méndez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain.
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain.
| | - Emilio Alba
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de la Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Sevilla, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16/12/00481), 28029, Madrid, Spain
- University of Málaga, Faculty of Medicine, 29010, Malaga, Spain
| |
Collapse
|
7
|
Ilari A, Cogliati V, Sherif N, Grassilli E, Ramazzotti D, Cordani N, Cazzaniga G, Di Bella C, Lavitrano M, Cazzaniga ME, Cerrito MG. Differential Expression of NOTCH-1 and Its Molecular Targets in Response to Metronomic Followed by Conventional Therapy in a Patient with Advanced Triple-Negative Breast Cancer. Biomedicines 2024; 12:272. [PMID: 38397874 PMCID: PMC10886740 DOI: 10.3390/biomedicines12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
A group of 27 patients diagnosed with metastatic triple-negative breast cancer (mTNBC) was randomly distributed into two groups and underwent different lines of metronomic treatment (mCHT). The former group (N 14) received first-line mCHT and showed a higher overall survival rate than the second group (N 13), which underwent second-line mCHT. Analysis of one patient still alive from the first group, diagnosed with mTNBC in 2019, showed a complete metabolic response (CMR) after a composite approach implicating first-line mCHT followed by second-line epirubicin and third-line nab-paclitaxel, and was chosen for subsequent molecular characterization. We found altered expression in the cancer stemness-associated gene NOTCH-1 and its corresponding protein. Additionally, we found changes in the expression of oncogenes, such as MYC and AKT, along with their respective proteins. Overall, our data suggest that a first-line treatment with mCHT followed by MTD might be effective by negatively regulating stemness traits usually associated with the emergence of drug resistance.
Collapse
Affiliation(s)
- Alice Ilari
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Viola Cogliati
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Noorhan Sherif
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Emanuela Grassilli
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Daniele Ramazzotti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Giorgio Cazzaniga
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy; (G.C.); (C.D.B.)
| | - Camillo Di Bella
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy; (G.C.); (C.D.B.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Maria Grazia Cerrito
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| |
Collapse
|