1
|
Lee JA, Choi HG, Eun HS, Bu J, Jang TM, Lee J, Son CY, Kim MS, Rou WS, Kim SH, Lee BS, Kim HN, Lee TH, Jeon HJ. Programmed Death 1 and Cytotoxic T-Lymphocyte-Associated Protein 4 Gene Expression in Peripheral Blood Mononuclear Cells Can Serve as Prognostic Biomarkers for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1493. [PMID: 38672574 PMCID: PMC11048418 DOI: 10.3390/cancers16081493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive form of liver cancer with poor prognosis. The lack of reliable biomarkers for early detection and accurate diagnosis and prognosis poses a significant challenge to its effective clinical management. In this study, we investigated the diagnostic and prognostic potential of programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in peripheral blood mononuclear cells (PBMCs) in HCC. PD-1 and CTLA-4 gene expression was analyzed comparatively using PBMCs collected from HCC patients and healthy individuals. The results revealed higher PD-1 gene expression levels in patients with multifocal tumors, lymphatic invasion, or distant metastasis than those in their control counterparts. However, conventional serum biomarkers of liver function do not exhibit similar correlations. In conclusion, PD-1 gene expression is associated with OS and PFS and CTLA-4 gene expression is associated with OS, whereas the serum biomarkers analyzed in this study show no significant correlation with survival in HCC. Hence, PD-1 and CTLA-4 expressed in PBMCs are considered potential prognostic biomarkers for patients with HCC that can facilitate prediction of malignancy, response to currently available HCC treatments, and overall survival.
Collapse
Affiliation(s)
- Ji Ah Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.A.L.); (J.B.)
| | - Hei-Gwon Choi
- Department of Medical Science, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (H.-G.C.); (H.S.E.); (H.N.K.)
| | - Hyuk Soo Eun
- Department of Medical Science, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (H.-G.C.); (H.S.E.); (H.N.K.)
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jiyoon Bu
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.A.L.); (J.B.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (T.M.J.); (C.Y.S.)
| | - Tae Min Jang
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (T.M.J.); (C.Y.S.)
| | - Jeongdong Lee
- Department of Biomedical Laboratory Science, Daegu Health College, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea; (J.L.); (M.S.K.)
| | - Chae Yeon Son
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (T.M.J.); (C.Y.S.)
| | - Min Seok Kim
- Department of Biomedical Laboratory Science, Daegu Health College, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea; (J.L.); (M.S.K.)
| | - Woo Sun Rou
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong 30099, Republic of Korea
| | - Seok Hyun Kim
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Byung Seok Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Ha Neul Kim
- Department of Medical Science, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (H.-G.C.); (H.S.E.); (H.N.K.)
| | - Tae Hee Lee
- Department of Biomedical Laboratory Science, Daegu Health College, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea; (J.L.); (M.S.K.)
| | - Hong Jae Jeon
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong 30099, Republic of Korea
| |
Collapse
|
2
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Heinrich T, Toepfer S, Steinmetzer K, Ruettger M, Walz I, Kanitz L, Lemuth O, Hubold S, Fritsch F, Loncarevic-Barcena I, Klingner S, Bocker HT, Ermantraut E. DNA-Binding Magnetic Nanoreactor Beads for Digital PCR Analysis. Anal Chem 2023; 95:14175-14183. [PMID: 37646599 PMCID: PMC10534990 DOI: 10.1021/acs.analchem.3c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Digital PCR (dPCR) is based on the separation of target amplification reactions into many compartments with randomly distributed template molecules. Here, we present a novel digital PCR format based on DNA binding magnetic nanoreactor beads (mNRBs). Our approach relies on the binding of all nucleic acids present in a sample to the mNRBs, which both provide a high-capacity binding matrix for capturing nucleic acids from a sample and define the space available for PCR amplification by the internal volume of their hydrogel core. Unlike conventional dPCR, this approach does not require a precise determination of the volume of the compartments used but only their number to calculate the number of amplified targets. We present a procedure in which genomic DNA is bound, the nanoreactors are loaded with PCR reagents in an aqueous medium, and amplification and detection are performed in the space provided by the nanoreactor suspended in fluorocarbon oil. mNRBs exhibit a high DNA binding capacity of 1.1 ng DNA/mNRB (95% CI 1.0-1.2) and fast binding kinetics with ka = 0.21 s-1 (95% CI 0.20-0.23). The dissociation constant KD was determined to be 0.0011 μg/μL (95% CI 0.0007-0.0015). A simple disposable chamber plate is used to accommodate the nanoreactor beads in a monolayer formation for rapid thermocycling and fluorescence detection. The performance of the new method was compared with conventional digital droplet PCR and found to be equivalent in terms of the precision and linearity of quantification. In addition, we demonstrated that mNRBs provide quantitative capture and loss-free analysis of nucleic acids contained in samples in different volumes.
Collapse
Affiliation(s)
| | | | | | | | - Ines Walz
- BLINK AG, Bruesseler Strasse 20, 07747 Jena, Germany
| | - Lea Kanitz
- BLINK AG, Bruesseler Strasse 20, 07747 Jena, Germany
| | - Oliver Lemuth
- BLINK AG, Bruesseler Strasse 20, 07747 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|