1
|
Guo Z, Zhang X, Yang D, Hu Z, Wu J, Zhou W, Wu S, Zhang W. Gefitinib metabolism-related lncRNAs for the prediction of prognosis, tumor microenvironment and drug sensitivity in lung adenocarcinoma. Sci Rep 2024; 14:10348. [PMID: 38710798 DOI: 10.1038/s41598-024-61175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
The complete compound of gefitinib is effective in the treatment of lung adenocarcinoma. However, the effect on lung adenocarcinoma (LUAD) during its catabolism has not yet been elucidated. We carried out this study to examine the predictive value of gefitinib metabolism-related long noncoding RNAs (GMLncs) in LUAD patients. To filter GMLncs and create a prognostic model, we employed Pearson correlation, Lasso, univariate Cox, and multivariate Cox analysis. We combined risk scores and clinical features to create nomograms for better application in clinical settings. According to the constructed prognostic model, we performed GO/KEGG and GSEA enrichment analysis, tumor immune microenvironment analysis, immune evasion and immunotherapy analysis, somatic cell mutation analysis, drug sensitivity analysis, IMvigor210 immunotherapy validation, stem cell index analysis and real-time quantitative PCR (RT-qPCR) analysis. We built a predictive model with 9 GMLncs, which showed good predictive performance in validation and training sets. The calibration curve demonstrated excellent agreement between the expected and observed survival rates, for which the predictive performance was better than that of the nomogram without a risk score. The metabolism of gefitinib is related to the cytochrome P450 pathway and lipid metabolism pathway, and may be one of the causes of gefitinib resistance, according to analyses from the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Immunological evasion and immunotherapy analysis revealed that the likelihood of immune evasion increased with risk score. Tumor microenvironment analysis found most immune cells at higher concentrations in the low-risk group. Drug sensitivity analysis found 23 sensitive drugs. Twenty-one of these drugs exhibited heightened sensitivity in the high-risk group. RT-qPCR analysis validated the characteristics of 9 GMlncs. The predictive model and nomogram that we constructed have good application value in evaluating the prognosis of patients and guiding clinical treatment.
Collapse
Affiliation(s)
- Zishun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College , Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College , Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Dingtao Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College , Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College , Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College , Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College , Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Shuoming Wu
- Department of Thoracic Surgery, The First People's Hospital of Lianyungang, No. 6, Zhenhua East Road, Lianyungang, 222000, China.
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College , Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
2
|
Song L, Gong Y, Wang E, Huang J, Li Y. Unraveling the tumor immune microenvironment of lung adenocarcinoma using single-cell RNA sequencing. Ther Adv Med Oncol 2024; 16:17588359231210274. [PMID: 38606165 PMCID: PMC11008351 DOI: 10.1177/17588359231210274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/09/2023] [Indexed: 04/13/2024] Open
Abstract
Tumor immune microenvironment (TIME) and its indications for lung cancer patient prognosis and therapeutic response have become new hotspots in cancer research in recent years. Tumor cells, immune cells, various regulatory factors, and their interactions in the TIME have been suggested to commonly influence lung cancer development and therapeutic outcome. The heterogeneity of TIME is composed of dynamic immune-related components, including various cancer cells, immune cells, cytokine/chemokine environments, cytotoxic activity, or immunosuppressive factors. The specific composition of cell subtypes may facilitate or hamper the response to immunotherapy and influence patient prognosis. Various markers have been found to stratify the patient prognosis or predict the therapeutic outcome. In this article, we systematically reviewed the recent advancement of TIME studies in lung adenocarcinoma (LUAD) using single-cell RNA sequencing (scRNA-seq) techniques, with specific focuses on the roles of TIME in LUAD development, TIME heterogeneity, indications of TIME in patient prognosis and therapeutic response during immunotherapy and drug resistance. The main findings in TIME heterogeneity and relevant markers or models for prognosis stratification and response prediction have been summarized. We hope that this review provides an overview of TIME status in LUAD and an inspiration for future development of strategies and biomarkers in LUAD treatment.
Collapse
Affiliation(s)
- Lele Song
- Department of Oncology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center of the Chinese PLA General Hospital, Beijing, P.R. China
| | - Erpeng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong province, P.R. China
| | - Jianchun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University. No. 295, Xichang Road, Wuhua District, Kunming, Yunnan Province 650032, P.R. China
| | - Yuemin Li
- Department of Oncology, Chinese PLA General Hospital. No.8, Dongdajie, Fengtai District, Beijing 100071, P.R. China
| |
Collapse
|
3
|
Chen Q, Zhao H, Hu J. A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:12330-12368. [PMID: 37938151 PMCID: PMC10683604 DOI: 10.18632/aging.205183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Accumulating evidence has demonstrated that chromatin regulators (CRs) regulate immune cell infiltration and are correlated with prognoses of patients in some cancers. However, the immunological and prognostic roles of CRs in lung adenocarcinoma (LUAD) are still unclear. Here, we systematically revealed the correlations of CRs with immunological features and the survival in LUAD patients based on a cohort of gene expression datasets from the public TCGA and GEO databases and real RNA-seq data by an integrative analysis using a comprehensive bioinformatics method. Totals of 160 differentially expressed CRs (DECRs) were identified between LUAD and normal lung tissues, and two molecular prognostic subtypes (MPSs) were constructed and evaluated based on 27 prognostic DECRs using five independent datasets (p =0.016, <0.0001, =0.008, =0.00038 and =0.00055, respectively). Six differentially expressed genes (DEGs) (CENPK, ANGPTL4, CCL20, CPS1, GJB3, TPSB2) between two MPSs had the most important prognostic feature and a six-gene prognostic model was established. LUAD patients in the low-risk subgroup showed a higher overall survival (OS) rate than those in the high-risk subgroup in nine independent datasets (p <0.0001, =0.021, =0.016, =0.0099, <0.0001, =0.0045, <0.0001, =0.0038 and =0.00013, respectively). Six-gene prognostic signature had the highest concordance index of 0.673 compared with 19 reported prognostic signatures. The risk score was significantly correlated with immunological features and activities of oncogenic signaling pathways. LUAD patients in the low-risk subgroup benefited more from immunotherapy and were less sensitive to conventional chemotherapy agents. This study provides novel insights into the prognostic and immunological roles of CRs in LUAD.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbo Zhao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Jing Hu
- Department of Medical Oncology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Medical Oncology, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
4
|
Liang P, Chen J, Yao L, Hao Z, Chang Q. A Deep Learning Approach for Prognostic Evaluation of Lung Adenocarcinoma Based on Cuproptosis-Related Genes. Biomedicines 2023; 11:biomedicines11051479. [PMID: 37239150 DOI: 10.3390/biomedicines11051479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Lung adenocarcinoma represents a significant global health challenge. Despite advances in diagnosis and treatment, the prognosis remains poor for many patients. In this study, we aimed to identify cuproptosis-related genes and to develop a deep neural network model to predict the prognosis of lung adenocarcinoma. We screened differentially expressed genes from The Cancer Genome Atlas data through differential analysis of cuproptosis-related genes. We then used this information to establish a prognostic model using a deep neural network, which we validated using data from the Gene Expression Omnibus. Our deep neural network model incorporated nine cuproptosis-related genes and achieved an area under the curve of 0.732 in the training set and 0.646 in the validation set. The model effectively distinguished between distinct risk groups, as evidenced by significant differences in survival curves (p < 0.001), and demonstrated significant independence as a standalone prognostic predictor (p < 0.001). Functional analysis revealed differences in cellular pathways, the immune microenvironment, and tumor mutation burden between the risk groups. Furthermore, our model provided personalized survival probability predictions with a concordance index of 0.795 and identified the drug candidate BMS-754807 as a potentially sensitive treatment option for lung adenocarcinoma. In summary, we presented a deep neural network prognostic model for lung adenocarcinoma, based on nine cuproptosis-related genes, which offers independent prognostic capabilities. This model can be used for personalized predictions of patient survival and the identification of potential therapeutic agents for lung adenocarcinoma, which may ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Pengchen Liang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
- School of Microelectronics, Shanghai University, Shanghai 201800, China
| | - Jianguo Chen
- School of Software Engineering, Sun Yat-sen University, Zhuhai 528478, China
| | - Lei Yao
- School of Microelectronics, Shanghai University, Shanghai 201800, China
| | - Zezhou Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Chang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| |
Collapse
|