1
|
Yaman Y, Bay V, Kişi YE. Discovery of host genetic factors through multi-locus GWAS against toxoplasmosis in sheep: addressing one health perspectives. BMC Vet Res 2025; 21:263. [PMID: 40221787 PMCID: PMC11992896 DOI: 10.1186/s12917-025-04719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Toxoplasma gondii stands as one of the most successful pathogens, capable of infecting nearly all warm-blooded species. It is estimated that up to 50% of human population might harbor Toxoplasmosis infections. One of the primary transmission routes is the consumption of tissue cysts from infected farm animals used for food production. Thus, controlling Toxoplasmosis in farm animals is of vital importance for human health and food safety. Selective breeding in farm animals, where available, could complement classical control measures like biosecurity measures, vaccination, and test-and-cull methods. This multidisciplinary approach will make the eradication of Toxoplasmosis more effective. For this purpose, we conducted four multi-locus genome-wide association (GWA) approaches to identify the polygenic factors underlying innate resistance to Toxoplasma gondii in naturally infected sheep. Our findings indicate that 16 single nucleotide polymorphisms (SNPs), exhibiting varying degrees of statistical power, play a significant role in host immunity against T. gondii infection. We propose the genes containing these SNPs or located within 100 ± Kb of them (PLSCR5, EPHA3, DGKB, IL12B, CGA, WDR64, TMEM158, CLMP, and SIAE) as potential candidate genes. This study represents the first exploration of host genetic factors against Toxoplasmosis in livestock, utilizing the ovine paradigm as its foundation.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Genetics, Faculty of Veterinary Medicine, Siirt University, Siirt, 56000, Turkey.
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir, 35100, Turkey
| | - Yiğit Emir Kişi
- Sheep Breeding and Research Institute, Bandırma/Balıkesir, 10200, Turkey
| |
Collapse
|
2
|
Jiang W, Liu W, Zhao J, Xu Z, Xi M, Wang X, Li B. Aberrant expression of multiple γ-glutamyltransferases is associated with tumor progression and patient outcome in prostate cancers. Front Oncol 2025; 15:1518636. [PMID: 40094020 PMCID: PMC11906340 DOI: 10.3389/fonc.2025.1518636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The human gamma-glutamyltransferase (GGT) is a membrane-bound extracellular glycoprotein with an enzymatic activity that cleaves gamma-glutamyl peptide bonds in glutathione and other peptides and transfers the gamma-glutamyl moiety to acceptors. It has been shown aberrant expression of GGT proteins in human cancers while their expression profiles in prostate cancers are not reported. Methods In this study, we analyzed the expression profiles of all protein-coding GGT genes using the TCGA-PRAD RNA-seq dataset derived from primary prostate cancers. GGT family gene expression profiles were also analyzed using the SU2C/PCF RNAseq dataset derived from aggressive late-stage prostate cancer patients. Androgen modulation of GGT family gene expression was analyzed using multiple NCBI/GEO datasets. Results Our results showed that prostate tissues expressed four major isoforms of GGT family genes (GGT1/5/6/7), of which GGT1 expression was upregulated but GGT6/GGT7 expression was downregulated in cancer tissues compared to benign tissues. However, GGT5 expression was increased along with tumor stage progression and associated with worse progression-free survival. GGT6 expression exhibited a superb AUC value in prostate cancer diagnosis and was associated with favorable progression-free survival. GGT1 expression was highly increased but GGT6/GGT7 expression was largely reduced in ERG-fusion-positive cases. In CRPC tumors, GGT6 expression was suppressed in patients with anti-AR therapies, which was reversed when patients were taken off the treatment. This AR-dependent modulation was confirmed in LNCaP cells and LuCaP35 xenograft models. In addition, compared to CRPC-Adeno tumors, treatment-induced NEPC tumors showed a reduced GGT1 but an elevated GGT7 level, which was in line with higher levels of GGT7 in NEPC H660 cells. Conclusion Our data suggests that GGT6 is a new AR downstream target but GGT7 is a potential NEPC biomarker.
Collapse
Affiliation(s)
- Wencong Jiang
- Department of Urology, Huadu District People's Hospital, Guangzhou, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, MO, United States
| | - Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhijian Xu
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Guangzhou, China
| | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, MO, United States
| |
Collapse
|
3
|
Huang H, Lian H, Liu W, Li B, Zhu R, Shao H. Sideroflexin family genes were dysregulated and associated with tumor progression in prostate cancers. Hum Genomics 2025; 19:10. [PMID: 39915876 PMCID: PMC11803981 DOI: 10.1186/s40246-024-00705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Sideroflexin (SFXN) family genes encode for a group of mitochondrial proteins involved in cellular processes such as iron homeostasis, amino acid metabolism, and energy production. Recent studies showed that they were aberrantly expressed in certain human cancers. However, there is a paucity of information about their expression in prostate cancer. In this study, we took a comprehensive approach to investigate their expression profiles in benign prostate tissue, prostate-derived cell lines, and prostate cancer tissues using multiple transcriptome datasets. Our results showed that SFXN1/3/4 genes were predominantly expressed in prostate tissue and cell lines. SFXN2/4 genes were significantly upregulated while the SFXN3 expression was significantly downregulated in malignant tissues compared to benign tissues. SFXN4 expression was identified as a diagnostic biomarker and prognostic factor for unfavorite survival outcomes. In advanced prostate cancers, SFXN2/4 expressions were positively correlated with the androgen receptor signaling activity but negatively correlated with the neuroendocrinal features. Further analysis discovered that SFXN5 expression was significantly elevated in neuroendocrinal prostate cancers. In conclusion, SFXN2/4 expressions are novel biomarkers in prostate cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Hua Huang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Huibo Lian
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Runzhi Zhu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang, China
| | - Haiyan Shao
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, The Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
4
|
Herrera-Quiterio GA, Valencia-González HA, de la Cruz-López KG, Fernández-Coto DL, Gil J, Marko-Varga G, Morales-Gálvez J, Sánchez NC, Rodríguez-Bautista R, Avilés-Salas A, Arrieta O, García-Carrancá A, Encarnación-Guevara S. TMEM160 Promotes Tumor Growth in Lung Adenocarcinoma and Cervical Adenocarcinoma Cell Lines. Int J Mol Sci 2025; 26:1097. [PMID: 39940865 PMCID: PMC11816668 DOI: 10.3390/ijms26031097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The Chromosome-Centric Human Proteome Project (C-HPP) is an international initiative. It aims to create a protein list expressed in human cells by each chromosomal and mitochondrial DNA to enhance our understanding of disease mechanisms, akin to the gene list generated by the Human Genome Project. Transmembrane protein 160 (TMEM160) is a member of the transmembrane proteins (TMEM) family. TMEM proteins have been implicated in cancer-related processes, including cell proliferation, migration, epithelial-mesenchymal transition, metastasis, and resistance to chemotherapy and radiotherapy. This study aimed to investigate the role of TMEM160 in non-small cell lung cancer and cervical cancer using cell lines, clinical samples, and xenograft studies. Our findings demonstrated that TMEM160 knockdown decreased the proliferation of lung and cervical cancer cell lines. We observed that TMEM160 is localized in the nucleus and cytoplasm and dynamic localization during mitosis of cancer cells and discovered a novel interaction between TMEM160 and nuclear proteins such as NUP50. Furthermore, the TMEM160 interactome was enriched in processes associated with apical junctions, xenobiotic metabolism, glycolysis, epithelial-mesenchymal transition, reactive oxygen species, UV response DNA, the P53 pathway, and the mitotic spindle. This study provides an initial understanding of the function of TMEM160 in lung and cervical cancer progression and clarifies the need to continue investigating the participation of TMEM160 in these cancers.
Collapse
Affiliation(s)
- Gloria Angelina Herrera-Quiterio
- Programa de Doctorado en Ciencias Bioquímicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico;
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.L.F.-C.); (J.M.-G.); (N.C.S.)
| | | | - Karen Griselda de la Cruz-López
- Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, CDMX, Mexico;
| | - Diana Lashidua Fernández-Coto
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.L.F.-C.); (J.M.-G.); (N.C.S.)
| | - Jeovanis Gil
- Clinical Chemistry Section, Department of Translational Medicine, Lund University, 22242 Lund, Sweden;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, 22242 Lund, Sweden;
| | - Josué Morales-Gálvez
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.L.F.-C.); (J.M.-G.); (N.C.S.)
| | - Nilda C. Sánchez
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.L.F.-C.); (J.M.-G.); (N.C.S.)
| | | | - Alejandro Avilés-Salas
- Pathology Department, National Cancer Institute, Mexico City 14080, CDMX, Mexico; (A.A.-S.); (O.A.)
| | - Oscar Arrieta
- Pathology Department, National Cancer Institute, Mexico City 14080, CDMX, Mexico; (A.A.-S.); (O.A.)
- Thoracic Oncology Unit, National Cancer Institute, Mexico City 14080, CDMX, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Mexico City 04510, CDMX, Mexico;
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico; (D.L.F.-C.); (J.M.-G.); (N.C.S.)
| |
Collapse
|
5
|
Li J, Wang X, Xue L, He Q. Exploring the therapeutic mechanism of curcumin in prostate cancer using network pharmacology and molecular docking. Heliyon 2024; 10:e33103. [PMID: 39022084 PMCID: PMC11253540 DOI: 10.1016/j.heliyon.2024.e33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Curcumin, a phenolic compound extracted from turmeric rhizomes, exhibits antitumour effects in preclinical models of tumours. However, its mechanism of action in prostate cancer remains unclear. Exploring the molecular mechanisms of curcumin in prostate cancer based on network pharmacology and molecular docking provides a new theoretical basis for prostate cancer treatment. Method Using tools such as PharmMapper, SuperPred, TargetNet, and SwissTargetPrediction, we obtained information on curcumin-related targets. We comprehensively collected prostate cancer-related targets from several databases, including GeneCards, CTD, DisGeNET, OMIM, and PharmGKB. Cross-cutting drug-disease targets were then derived by screening using the Venny 2.1.0 tool. Subsequently, we used the DAVID platform to perform in-depth GO and KEGG enrichment analyses of the drug-disease-shared targets. To construct a PPI network map of the cross-targets and screen the 10 core targets, we combined the STRING database and Cytoscape 3.7.2. Molecular docking experiments were performed using AutoDockTools 1.5.7 software. Finally, we used several databases such as GEPIA, HPA, cBioPortal, and TIMER to further analyse the screened core targets in detail. Result We identified 307 key targets of curcumin in cancer treatment. After GO functional enrichment analysis, we obtained 1119 relevant entries, including 782 biological progression (BP) entries, 112 cellular component (CC) entries, and 225 molecular function (MF) entries. In addition, KEGG pathway enrichment analysis revealed 126 signalling pathways, which were mainly involved in the cancer pathway, such as lipid and atherosclerosis pathway, PI3K-Akt signal pathway, MAPK signal pathway, Ras signal pathways, and chemical carcinogenesis-reactive oxygen species. By applying Cytoscape 3.7.2 software, we identified SRC, PIK3R1, STAT3, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1 as core targets. Molecular docking experiments showed that the binding energies of curcumin to these core targets were all below -1.85 kJ mol-1, which fully demonstrated that curcumin could spontaneously bind to these core targets. Finally, these results were validated at multiple levels, including mRNA expression, protein expression, and immune infiltration. Conclusion Through in-depth network pharmacology and molecular docking studies, we have found that curcumin may have anticancer potential by upregulating the expression of PIK3R1 and STAT3, and downregulating the binding ability of molecules such as SRC, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1. In addition, curcumin may interfere with the cyclic process of prostate cancer cells by inhibiting key signalling pathways such as the PI3K-Akt signalling pathway, MAPK signalling pathway, and Ras, thereby inhibiting their growth. This study not only reveals the potential molecular mechanism of curcumin in the treatment of prostate cancer but also provides an important theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Xi'an Jiaotong University, China
- Department of Urology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| | - Xiong Wang
- Department of Pharmacology, Ankang Maternity and Child Health Care Hospital, Ankang, 725000, Shaanxi Province, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| |
Collapse
|
6
|
Xu T, Yin F, Shi K. TMEM158 functions as an oncogene and promotes lung adenocarcinoma progression through the PI3K/AKT pathway via interaction with TWIST1. Exp Cell Res 2024; 437:114010. [PMID: 38508329 DOI: 10.1016/j.yexcr.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Lung adenocarcinoma (LUAD) is a common and deadly form of lung cancer, with high rates of metastasis and unsatisfactory clinical outcomes. Herein, we examined the influence of TMEM158 on the LUAD progression. A combination of bioinformatic analyses was used to assess the TMEM158 expression pattern, prognostic implications, and potential function in LUAD. The levels of TMEM158 and TWIST1 were evaluated in clinical samples from LUAD patients using Western blot analysis and qRT-PCR. To discover the function and underlying molecular pathways of TMEM158 in LUAD, we employed a combination of experimental approaches in vitro, such as flow cytometry analysis and colony formation, Co-IP, CCK-8, Transwell, and wound-healing assays. Elevated expression of TMEM158 in LUAD is associated with increased cancer aggressiveness and a poor prognosis. In vitro experiments demonstrated that high levels of TMEM158 promote cell proliferation, progression through the cell cycle, migration, and invasion while suppressing apoptosis. Knockdown of TMEM158 produced opposite effects. The underlying mechanism involves TMEM158 and TWIST1 directly interacting, stimulating the PI3K/AKT signaling pathway in LUAD cells. This investigation emphasizes the molecular functions of TMEM158 in LUAD progression and proposes targeting it as a promising treatment approach for managing LUAD.
Collapse
Affiliation(s)
- Tao Xu
- Anhui Medical University, Hefei, 230000, China; Department of Cardiothoracic Surgery, The First People's Hospital of Wuhu, Wuhu, 241000, China.
| | - Fang Yin
- Department of Cardiothoracic Surgery, The First People's Hospital of Wuhu, Wuhu, 241000, China.
| | - Kaihu Shi
- Anhui Medical University, Hefei, 230000, China; Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, 210028, China.
| |
Collapse
|
7
|
Mathes A, Duman MB, Neumann A, Dobreva G, Schmidt T. S-adenosylmethionine treatment affects histone methylation in prostate cancer cells. Gene 2024; 893:147915. [PMID: 37866662 DOI: 10.1016/j.gene.2023.147915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
S-adenosylmethionine (SAM) represents a potent inhibitor of cancer cell proliferation, migration, and invasionin vitro.The underlying mechanisms remain elusive. Here, we examined, if treatment with SAM may cause alterations in the methylation of the histone marks H3K4me3 and H3K27me3, which are both known to play important roles in the initiation and progression of prostate cancer. We treated PC-3 cells with 200 µmol SAM, a concentration known to cause anticancerogenic effects, followed by ChIP-sequencing for H3K4me3 and H3K27me3. We detected 236 differentially methylated regions for H3K27me3 and 560 differentially methylated regions for H3K4me3. GO Term enrichment showed upregulation of anticancerogenic, as well as downregulation of cancerogenic related biological processes, molecular functions, and pathways. Furthermore, we compared specific methylation profiles of SAM treated samples to gene expression changes (RNA-Seq). 35 upregulated and 56 downregulated genes (total: 604 differentially expressed genes) could be related to hypomethylated and hypermethylated regions. 17 upregulated genes could be identified as tumor suppressor genes, 45 downregulated genes in contrast are considered as oncogenes. As a conclusion it can be stated that SAM treatment of prostate cancer cells resulted in alterations of H3K4me3 and H3K27me3 methylation profiles. Gene to peak annotation, alignment with results of a transcriptome study as well as GO-term analysis underpinned the biological relevance of methylation changes.
Collapse
Affiliation(s)
- Arthur Mathes
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Gergana Dobreva
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Schmidt
- Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
8
|
Herrera-Quiterio GA, Encarnación-Guevara S. The transmembrane proteins (TMEM) and their role in cell proliferation, migration, invasion, and epithelial-mesenchymal transition in cancer. Front Oncol 2023; 13:1244740. [PMID: 37936608 PMCID: PMC10627164 DOI: 10.3389/fonc.2023.1244740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023] Open
Abstract
Transmembrane proteins (TMEM) are located in the different biological membranes of the cell and have at least one passage through these cellular compartments. TMEM proteins carry out a wide variety of functions necessary to maintain cell homeostasis TMEM165 participates in glycosylation protein, TMEM88 in the development of cardiomyocytes, TMEM45A in epidermal keratinization, and TMEM74 regulating autophagy. However, for many TMEM proteins, their physiological function remains unknown. The role of these proteins is being recently investigated in cancer since transcriptomic and proteomic studies have revealed that exits differential expression of TMEM proteins in different neoplasms concerning cancer-free tissues. Among the cellular processes in which TMEM proteins have been involved in cancer are the promotion or suppression of cell proliferation, epithelial-mesenchymal transition, invasion, migration, intravasation/extravasation, metastasis, modulation of the immune response, and response to antineoplastic drugs. Inclusive data suggests that the participation of TMEM proteins in these cellular events could be carried out through involvement in different cell signaling pathways. However, the exact mechanisms not clear. This review shows a description of the involvement of TMEM proteins that promote or decrease cell proliferation, migration, and invasion in cancer cells, describes those TMEM proteins for which both a tumor suppressor and a tumor promoter role have been identified, depending on the type of cancer in which the protein is expressed. As well as some TMEM proteins involved in chemoresistance. A better characterization of these proteins is required to improve the understanding of the tumors in which their expression and function are altered; in addition to improving the understanding of the role of these proteins in cancer will show those TMEM proteins be potential candidates as biomarkers of response to chemotherapy or prognostic biomarkers or as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Feng R, Lu M, Yin C, Xu K, Liu L, Xu P. Identification of candidate genes and pathways associated with juvenile idiopathic arthritis by integrative transcriptome-wide association studies and mRNA expression profiles. Arthritis Res Ther 2023; 25:19. [PMID: 36755318 PMCID: PMC9906884 DOI: 10.1186/s13075-023-03003-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
AIM Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease of childhood, with genetic susceptibility and pathological processes such as autoimmunity and autoinflammation, but its pathogenesis is unclear. We conducted a transcriptome-wide association study (TWAS) using expression interpolation from a large-scale genome-wide association study (GWAS) dataset to identify genes, biological pathways, and environmental chemicals associated with JIA. METHODS We obtained published GWAS data on JIA for TWAS and used mRNA expression profiling to validate the genes identified by TWAS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. A protein-protein interaction (PPI) network was generated, and central genes were obtained using Molecular Complex Detection (MCODE). Finally, chemical gene expression datasets were obtained from the Comparative Toxicogenomics database for chemical genome enrichment analysis. RESULTS TWAS identified 1481 genes associated with JIA, and 154 differentially expressed genes were identified based on mRNA expression profiles. After comparing the results of TWAS and mRNA expression profiles, we obtained eight overlapping genes. GO and KEGG enrichment analyses of the genes identified by TWAS yielded 163 pathways, and PPI network analysis as well as MCODE resolution identified a total of eight clusters. Through chemical gene set enrichment analysis, 287 environmental chemicals associated with JIA were identified. CONCLUSION By integrating TWAS and mRNA expression profiles, genes, biological pathways, and environmental chemicals associated with JIA were identified. Our findings provide new insights into the pathogenesis of JIA, including candidate genetic and environmental factors contributing to its onset and progression.
Collapse
Affiliation(s)
- Ruoyang Feng
- grid.452452.00000 0004 1757 9282Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xi’an, 710054 Shanxi China
| | - Mengnan Lu
- grid.452672.00000 0004 1757 5804Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Chunyan Yin
- grid.452672.00000 0004 1757 5804Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Ke Xu
- grid.452452.00000 0004 1757 9282Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xi’an, 710054 Shanxi China
| | - Lin Liu
- grid.452452.00000 0004 1757 9282Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xi’an, 710054 Shanxi China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xian Jiaotong University, Xi'an, 710054, Shanxi, China.
| |
Collapse
|