1
|
Wang YM, Wang CY, Liu KY, Huang YH, Chen TB, Chiu KN, Liang CY, Lu NH. CNN-Based Cross-Modality Fusion for Enhanced Breast Cancer Detection Using Mammography and Ultrasound. Tomography 2024; 10:2038-2057. [PMID: 39728907 DOI: 10.3390/tomography10120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Breast cancer is a leading cause of mortality among women in Taiwan and globally. Non-invasive imaging methods, such as mammography and ultrasound, are critical for early detection, yet standalone modalities have limitations in regard to their diagnostic accuracy. This study aims to enhance breast cancer detection through a cross-modality fusion approach combining mammography and ultrasound imaging, using advanced convolutional neural network (CNN) architectures. Materials and Methods: Breast images were sourced from public datasets, including the RSNA, the PAS, and Kaggle, and categorized into malignant and benign groups. Data augmentation techniques were used to address imbalances in the ultrasound dataset. Three models were developed: (1) pre-trained CNNs integrated with machine learning classifiers, (2) transfer learning-based CNNs, and (3) a custom-designed 17-layer CNN for direct classification. The performance of the models was evaluated using metrics such as accuracy and the Kappa score. Results: The custom 17-layer CNN outperformed the other models, achieving an accuracy of 0.964 and a Kappa score of 0.927. The transfer learning model achieved moderate performance (accuracy 0.846, Kappa 0.694), while the pre-trained CNNs with machine learning classifiers yielded the lowest results (accuracy 0.780, Kappa 0.559). Cross-modality fusion proved effective in leveraging the complementary strengths of mammography and ultrasound imaging. Conclusions: This study demonstrates the potential of cross-modality imaging and tailored CNN architectures to significantly improve diagnostic accuracy and reliability in breast cancer detection. The custom-designed model offers a practical solution for early detection, potentially reducing false positives and false negatives, and improving patient outcomes through timely and accurate diagnosis.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Critical Care Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Chi-Yuan Wang
- Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Kuo-Ying Liu
- Department of Radiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Yung-Hui Huang
- Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Tai-Been Chen
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Kon-Ning Chiu
- Department of Business Management, National Sun Yat-sen University, Kaohsiung City 804201, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung City 804201, Taiwan
| | - Chih-Yu Liang
- Department of Emergency Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Nan-Han Lu
- Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 824005, Taiwan
- Department of Radiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 824005, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 824005, Taiwan
| |
Collapse
|
2
|
Fan W, Sun W, Xu MZ, Pan JJ, Man FY. Diagnosis of benign and malignant nodules with a radiomics model integrating features from nodules and mammary regions on DCE-MRI. Front Oncol 2024; 14:1307907. [PMID: 38450180 PMCID: PMC10915177 DOI: 10.3389/fonc.2024.1307907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Objectives To establish a radiomics model for distinguishing between the benign and malignant mammary gland nodules via combining the features from nodule and mammary regions on DCE-MRI. Methods In this retrospective study, a total of 103 cases with mammary gland nodules (malignant/benign = 80/23) underwent DCE-MRI, and was confirmed by biopsy pathology. Features were extracted from both nodule region and mammary region on DCE-MRI. Three SVM classifiers were built for diagnosis of benign and malignant nodules as follows: the model with the features only from nodule region (N model), with the features only from mammary region (M model) and the model combining the features from nodule region and mammary region (NM model). The performance of models was evaluated with the area under the curve of receiver operating characteristic (AUC). Results One radiomic features is selected from nodule region and 3 radiomic features is selected from mammary region. Compared with N or M model, NM model exhibited the best performance with an AUC of 0.756. Conclusions Compared with the model only using the features from nodule or mammary region, the radiomics-based model combining the features from nodule and mammary region outperformed in the diagnosis of benign and malignant nodules.
Collapse
Affiliation(s)
- Wei Fan
- Department of Radiology, Rocket Force Characteristic Medical Center of the Chinese People's Liberation Army, Beijing, China
| | - Wei Sun
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ze Xu
- Postgraduate Training Base of Jinzhou Medical University, Rocket Force Characteristic Medical Center of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Jing Pan
- Department of Radiology, Rocket Force Characteristic Medical Center of the Chinese People's Liberation Army, Beijing, China
| | - Feng Yuan Man
- Department of Radiology, Rocket Force Characteristic Medical Center of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
3
|
Sun R, Zhang M, Yang L, Yang S, Li N, Huang Y, Song H, Wang B, Huang C, Hou F, Wang H. Preoperative CT-based deep learning radiomics model to predict lymph node metastasis and patient prognosis in bladder cancer: a two-center study. Insights Imaging 2024; 15:21. [PMID: 38270647 PMCID: PMC10811316 DOI: 10.1186/s13244-023-01569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVE To establish a model for predicting lymph node metastasis in bladder cancer (BCa) patients. METHODS We retroactively enrolled 239 patients who underwent three-phase CT and resection for BCa in two centers (training set, n = 185; external test set, n = 54). We reviewed the clinical characteristics and CT features to identify significant predictors to construct a clinical model. We extracted the hand-crafted radiomics features and deep learning features of the lesions. We used the Minimum Redundancy Maximum Relevance algorithm and the least absolute shrinkage and selection operator logistic regression algorithm to screen features. We used nine classifiers to establish the radiomics machine learning signatures. To compensate for the uneven distribution of the data, we used the synthetic minority over-sampling technique to retrain each machine-learning classifier. We constructed the combined model using the top-performing radiomics signature and clinical model, and finally presented as a nomogram. We evaluated the combined model's performance using the area under the receiver operating characteristic, accuracy, calibration curves, and decision curve analysis. We used the Kaplan-Meier survival curve to analyze the prognosis of BCa patients. RESULTS The combined model incorporating radiomics signature and clinical model achieved an area under the receiver operating characteristic of 0.834 (95% CI: 0.659-1.000) for the external test set. The calibration curves and decision curve analysis demonstrated exceptional calibration and promising clinical use. The combined model showed good risk stratification performance for progression-free survival. CONCLUSION The proposed CT-based combined model is effective and reliable for predicting lymph node status of BCa patients preoperatively. CRITICAL RELEVANCE STATEMENT Bladder cancer is a type of urogenital cancer that has a high morbidity and mortality rate. Lymph node metastasis is an independent risk factor for death in bladder cancer patients. This study aimed to investigate the performance of a deep learning radiomics model for preoperatively predicting lymph node metastasis in bladder cancer patients. KEY POINTS • Conventional imaging is not sufficiently accurate to determine lymph node status. • Deep learning radiomics model accurately predicted bladder cancer lymph node metastasis. • The proposed method showed satisfactory patient risk stratification for progression-free survival.
Collapse
Affiliation(s)
- Rui Sun
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Meng Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Lei Yang
- Department of Radiology, Qingdao Center Hospital, Qingdao, 266042, Shandong, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Na Li
- Department of Radiology, The People's Hospital of Zhangqiu Area, Jinan, 250200, Shandong, China
| | - Yonghua Huang
- Department of Radiology, The Puyang Oilfield General Hospital, Puyang, 457001, Henan, China
| | - Hongzheng Song
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Bo Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, 100080, China
| | - Feng Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
4
|
Zhang J, Li Z, Lin H, Xue M, Wang H, Fang Y, Liu S, Huo T, Zhou H, Yang J, Xie Y, Xie M, Lu L, Liu P, Ye Z. Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures. Front Med (Lausanne) 2023; 10:1224489. [PMID: 37663656 PMCID: PMC10471443 DOI: 10.3389/fmed.2023.1224489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives To explore an intelligent detection technology based on deep learning algorithms to assist the clinical diagnosis of distal radius fractures (DRFs), and further compare it with human performance to verify the feasibility of this method. Methods A total of 3,240 patients (fracture: n = 1,620, normal: n = 1,620) were included in this study, with a total of 3,276 wrist joint anteroposterior (AP) X-ray films (1,639 fractured, 1,637 normal) and 3,260 wrist joint lateral X-ray films (1,623 fractured, 1,637 normal). We divided the patients into training set, validation set and test set in a ratio of 7:1.5:1.5. The deep learning models were developed using the data from the training and validation sets, and then their effectiveness were evaluated using the data from the test set. Evaluate the diagnostic performance of deep learning models using receiver operating characteristic (ROC) curves and area under the curve (AUC), accuracy, sensitivity, and specificity, and compare them with medical professionals. Results The deep learning ensemble model had excellent accuracy (97.03%), sensitivity (95.70%), and specificity (98.37%) in detecting DRFs. Among them, the accuracy of the AP view was 97.75%, the sensitivity 97.13%, and the specificity 98.37%; the accuracy of the lateral view was 96.32%, the sensitivity 94.26%, and the specificity 98.37%. When the wrist joint is counted, the accuracy was 97.55%, the sensitivity 98.36%, and the specificity 96.73%. In terms of these variables, the performance of the ensemble model is superior to that of both the orthopedic attending physician group and the radiology attending physician group. Conclusion This deep learning ensemble model has excellent performance in detecting DRFs on plain X-ray films. Using this artificial intelligence model as a second expert to assist clinical diagnosis is expected to improve the accuracy of diagnosing DRFs and enhance clinical work efficiency.
Collapse
Affiliation(s)
- Jiayao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhimin Li
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Lin
- Department of Orthopedics, Nanzhang People’s Hospital, Nanzhang, China
| | - Mingdi Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglin Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Fang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongtong Huo
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mao Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|