1
|
Tuo Z, Feng D, Jiang Z, Bi L, Yang C, Wang Q. Unveiling clinical significance and tumor immune landscape of CXCL12 in bladder cancer: Insights from multiple omics analysis. Chin J Cancer Res 2023; 35:686-701. [PMID: 38204439 PMCID: PMC10774138 DOI: 10.21147/j.issn.1000-9604.2023.06.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Objective The interplay between chemokine C-X-C motif ligand 12 (CXCL12) and its specific receptors is known to trigger various signaling pathways, contributing to tumor proliferation and metastasis. Consequently, targeting this signaling axis has emerged as a potential strategy in cancer therapy. However, the precise role of CXCL12 in clinical therapy, especially in immunotherapy for bladder cancer (BCa), remains poorly elucidated. Methods We gathered multiple omics data from public databases to unveil the clinical relevance and tumor immune landscape associated with CXCL12 in BCa patients. Univariate and multivariate Cox regression analyses were employed to assess the independent prognostic significance of CXCL12 expression and formulate a nomogram. The expression of CXCL12 in BCa cell lines and clinical tissue samples was validated using enzyme-linked immunosorbent assays (ELISA) and immunohistochemistry (IHC). Results While transcriptional expression of CXCL12 exhibited a decrease in nearly all tumor tissues, CXCL12 methylation expression was notably increased in BCa tissues. Single-cell RNA analysis highlighted tissue stem cells and endothelial cells as the primary sources expressing CXCL12. Abnormal CXCL12 expression, based on transcriptional and methylation levels, correlated with various clinical characteristics in BCa patients. Functional analysis indicated enrichment of CXCL12 and its co-expression genes in immune regulation and cell adhesion. The immune landscape analysis unveiled a significant association between CXCL12 expression and M2 macrophages (CD163+ cells) in BCa tissues. Notably, CXCL12 expression emerged as a potential predictor of immunotherapy response and chemotherapy drug sensitivity in BCa patients. Conclusions Taken together, these findings suggest aberrant production of CXCL12 in BCa tissues, potentially influencing the treatment responses of affected individuals.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Rehabilitation, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhiwei Jiang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Liangkuan Bi
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chao Yang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qi Wang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
2
|
Zhang Z, Yu Y, Zhang Z, Li D, Liang Z, Wang L, Chen Y, Liang Y, Niu H. Cancer-associated fibroblasts-derived CXCL12 enhances immune escape of bladder cancer through inhibiting P62-mediated autophagic degradation of PDL1. J Exp Clin Cancer Res 2023; 42:316. [PMID: 38001512 PMCID: PMC10675892 DOI: 10.1186/s13046-023-02900-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), the predominant stromal cell of tumor microenvironment (TME), play an important role in tumor progression and immunoregulation by remodeling extracellular matrix (ECM) and secreting cytokines. However, little is known about the details of the underlying mechanism in bladder cancer. METHODS Bioinformatics analysis was performed to analyze the prognostic value of CAFs and CXCL12 using GEO, TCGA and SRA databases. The effects of CXCL12 on bladder cancer progression were investigated through in vitro and in vivo assays. The biological mechanism of the effect of CXCL12 on PDL1 were investigated using western blotting, immunoprecipitation, RT-PCR, immunofluorescence, mass spectrometry, protein stability, and flow cytometry. RESULTS The results demonstrated that CAFs-derived CXCL12 promoted cancer cell migration and invasion and upregulated PDL1. Mechanistically, upon binding to its specific receptor, CXCL12 activated the downstream JAK2/STAT3 pathway and rapidly up-regulated the expression of deubiquitinase CYLD. CYLD deubiquitinated P62 causing P62 accumulation, which in turn inhibited the autophagic degradation of PDL1. In vivo experiments demonstrated that blocking CXCL12 inhibited tumor growth, reduced tumor PDL1 expression and increased immune cell infiltration. CONCLUSIONS This study revealed a novel mechanism for the role of CXCL12 in P62-mediated PDL1 autophagic regulation. Combined application of CXCL12 receptor blocker and PD1/PDL1 blocker can more effectively inhibit PDL1 expression and enhance antitumor immune response. Targeting CAFs-derived CXCL12 may provide an effective strategy for immunotherapy in bladder cancer.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medicine College, Qingdao University, Qingdao, China
| | - Yongbo Yu
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medicine College, Qingdao University, Qingdao, China
| | - Zhilei Zhang
- Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, China
| | - Dan Li
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liping Wang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liang
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China.
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China.
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|