1
|
Bellazzo A, Montico B, Guerrieri R, Colizzi F, Steffan A, Polesel J, Fratta E. Unraveling the role of hypoxia-inducible factors in cutaneous melanoma: from mechanisms to therapeutic opportunities. Cell Commun Signal 2025; 23:177. [PMID: 40205422 PMCID: PMC11984274 DOI: 10.1186/s12964-025-02173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Hypoxia is a common feature of solid malignancies, including cutaneous melanoma (CM). Hypoxia-inducible factor (HIF)-1α and HIF-2α orchestrate cellular responses to hypoxia and coordinate a transcriptional program that promote several aggressive features in CM, such as angiogenesis, epithelial-mesenchymal transition, metastasis formation, metabolic rewiring, and immune escape. BRAFV600E, which is the most frequent mutation observed in CM patients, usually increases HIF-α signaling not only in hypoxia, but also in normoxic CM cells, enabling HIF-1α and HIF-2α to continuously activate downstream molecular pathways. In this review, we aim to provide a comprehensive overview of the intricate role and regulation of HIF-1α and HIF-2α in CM, with a brief focus on the complex interactions between HIF-α subunits and non-coding RNAs. We also discuss HIF-α-mediated cellular responses in normoxia along with the mechanisms that allow HIF-α subunits to maintain their stability under normal oxygen conditions. Finally, we resume available evidence on potential therapeutic approaches aimed at targeting HIF-1α and/or HIF-2α.
Collapse
Affiliation(s)
- Arianna Bellazzo
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini, 2, Aviano, 33081, PN, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini, 2, Aviano, 33081, PN, Italy.
| | - Roberto Guerrieri
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini, 2, Aviano, 33081, PN, Italy
| | - Francesca Colizzi
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini, 2, Aviano, 33081, PN, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini, 2, Aviano, 33081, PN, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini, 2, Aviano, 33081, PN, Italy
| | - Elisabetta Fratta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini, 2, Aviano, 33081, PN, Italy.
| |
Collapse
|
2
|
Jiang C, He X, Chen X, Huang J, Liu Y, Zhang J, Chen H, Sui X, Lv X, Zhao X, Xiao C, Xiao J, Zhang J, Lu T, Chen H, Li H, Wang H, Lv G, Ye L, Li R, Zheng J, Yao J, Kang Y, Wang T, Li H, Wang J, Zhang Y, Chen G, Cai J, Xiang AP, Yang Y. Lactate accumulation drives hepatocellular carcinoma metastasis through facilitating tumor-derived exosome biogenesis by Rab7A lactylation. Cancer Lett 2025; 627:217636. [PMID: 40120799 DOI: 10.1016/j.canlet.2025.217636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Previous studies have demonstrated that lactate accumulation, a common hallmark for metabolic deprivation in solid tumors, could actively drive tumor invasion and metastasis. However, whether lactate influences the biogenesis of tumor-derived exosomes (TDEs), the prerequisite for distant metastasis formation, remains unknown. Here, we demonstrated that extracellular lactate, after taken up by tumor cells via lactate transporter MCT1, drove the release of TDE mainly through facilitating multivesicular body (MVB) trafficking towards plasma membrane instead of lysosome. Mechanistically, lactate promoted p300-mediated Rab7A lactylation, which hereafter inhibited its GTPase activity and promoted MVB docking with plasma membrane. Moreover, lactate administration enriched integrin β4 and ECM remodeling-related proteins in TDE cargos, which promoted pulmonary pre-metastatic niche formation. Combinatorial inhibition of MCT1 and p300 significantly abrogated HCC metastasis in a clinical-relevant PDX model. In summary, we demonstrated that lactate promote TDE biogenesis and HCC pulmonary metastasis, and proposed a potential clinical strategy targeting TDEs to prevent HCC metastasis.
Collapse
Affiliation(s)
- Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Xinyi He
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xialin Chen
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jianyang Huang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jianhao Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Huaxin Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Sui
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Xing Lv
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Xuegang Zhao
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Yinqian Kang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jiancheng Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China.
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China.
| |
Collapse
|
3
|
Yu H, Li J, Peng S, Liu Q, Chen D, He Z, Xiang J, Wang B. Tumor microenvironment: Nurturing cancer cells for immunoevasion and druggable vulnerabilities for cancer immunotherapy. Cancer Lett 2024; 611:217385. [PMID: 39645024 DOI: 10.1016/j.canlet.2024.217385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tumor microenvironment (TME) is an intricate ecosystem where cancer cells thrive, encompassing a wide array of cellular and non-cellular components. The TME co-evolves with tumor progression in a spatially and temporally dynamic manner, which endows cancer cells with the adaptive capability of evading immune surveillance. To this end, diverse cancer-intrinsic mechanisms were exploited to dampen host immune system, such as upregulating immune checkpoints, impairing antigens presentation and competing for nutrients. In this review, we discuss how cancer immunoevasion is tightly regulated by hypoxia, one of the hallmark biochemical features of the TME. Moreover, we comprehensively summarize how immune evasiveness of cancer cells is facilitated by the extracellular matrix, as well as soluble components of TME, including inflammatory factors, lactate, nutrients and extracellular vesicles. Given their important roles in dictating cancer immunoevasion, various strategies to target TME components are proposed, which holds promising translational potential in developing novel therapeutics to sensitize anti-cancer immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Hongyang Yu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Shiyin Peng
- School of Medicine, Chongqing University, Chongqing, China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; Institute of Pathology and Southwest Cancer Center, And Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
4
|
Liu J, Zhou F, Tang Y, Li L, Li L. Progress in Lactate Metabolism and Its Regulation via Small Molecule Drugs. Molecules 2024; 29:5656. [PMID: 39683818 DOI: 10.3390/molecules29235656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate, once viewed as a byproduct of glycolysis and a metabolic "waste", is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes. Targeting lactate production, transport, and lactylation may offer therapeutic potential for multiple diseases, yet a systematic summary of the small molecules modulating lactate and its metabolism in various diseases is lacking. This review outlines the sources and clearance of lactate, as well as its roles in cancer, liver fibrosis, sepsis, ischemic stroke, myocardial infarction, and acute kidney injury, and summarizes the effects of small molecules on lactate regulation. It aims to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linghui Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Dai E, Wang W, Li Y, Ye D, Li Y. Lactate and lactylation: Behind the development of tumors. Cancer Lett 2024; 591:216896. [PMID: 38641309 DOI: 10.1016/j.canlet.2024.216896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
There is growing evidence that lactate can have a wide range of biological impacts in addition to being a waste product of metabolism. Because of the Warburg effect, tumors generate lots of lactate, which create a tumor microenvironment (TME) with low nutrition, hypoxia, and low pH. As a result, the immunosuppressive network is established to gain immune escape potential and regulate tumor growth. Consequently, the tumor lactate pathway is emerging as a possible therapeutic target for tumor. Importantly, Zhao et al. first discovered histone lysine lactylation (Kla) in 2019, which links gene regulation to cell metabolism through dysmetabolic activity and epigenetic modifications, influencing TME and tumor development. Therefore, the aim of this paper is to explore the effects of lactate and lactylation on the TME and tumors, and provide theoretical basis for further research on potential therapeutic targets and biomarkers, with the view to providing new ideas and methods for tumor treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Enci Dai
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Shanghai, 201600, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Shanghai, 201600, China.
| | - Yingying Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Shanghai, 201600, China.
| | - Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| | - Yanli Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Shanghai, 201600, China.
| |
Collapse
|
6
|
Mathew M, Nguyen NT, Bhutia YD, Sivaprakasam S, Ganapathy V. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth. Cancers (Basel) 2024; 16:504. [PMID: 38339256 PMCID: PMC10854907 DOI: 10.3390/cancers16030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Aerobic glycolysis in cancer cells, originally observed by Warburg 100 years ago, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect. In this review, we focus on the interplay between these transporters and metabolic pathways that facilitates metabolic reprogramming, which has become a hallmark of cancer cells. The beneficial outcome of this recent understanding of the unique metabolic signature surrounding the Warburg effect is the identification of novel drug targets for the development of a new generation of therapeutics to treat cancer.
Collapse
Affiliation(s)
| | | | | | | | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (N.T.N.); (Y.D.B.); (S.S.)
| |
Collapse
|
7
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Shang Q, Bian X, Zhu L, Liu J, Wu M, Lou S. Lactate Mediates High-Intensity Interval Training-Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway. Antioxidants (Basel) 2023; 12:2087. [PMID: 38136207 PMCID: PMC10740508 DOI: 10.3390/antiox12122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondrial biogenesis and fusion are essential for maintaining healthy mitochondria and ATP production. High-intensity interval training (HIIT) can enhance mitochondrial function in mouse hippocampi, but its underlying mechanism is not completely understood. Lactate generated during HIIT may mediate the beneficial effects of HIIT on neuroplasticity by activating the lactate receptor GPR81. Furthermore, growing evidence shows that lactate contributes to mitochondrial function. Given that mitochondrial function is crucial for cerebral physiological processes, the current study aimed to determine the mechanism of HIIT in hippocampal mitochondrial function. In vivo, GPR81 was knocked down in the hippocampi of mice via the injection of adeno-associated virus (AAV) vectors. The GPR81-knockdown mice were subjected to HIIT. The results demonstrated that HIIT increased mitochondria numbers, ATP production, and oxidative phosphorylation (OXPHOS) in the hippocampi of mice. In addition, HIIT induced mitochondrial biogenesis, fusion, synaptic plasticity, and ERK1/2 phosphorylation but not in GPR81-knockdown mice. In vitro, Neuro-2A cells were treated with L-lactate, a GPR81 agonist, and an ERK1/2 inhibitor. The results showed that both L-lactate and the GPR81 agonist increased mitochondrial biogenesis, fusion, ATP levels, OXPHOS, mitochondrial membrane potential, and synaptic plasticity. However, the inhibition of ERK1/2 phosphorylation blunted L-lactate or the GPR81 agonist-induced promotion of mitochondrial function and synaptic plasticity. In conclusion, our findings suggest that lactate mediates HIIT-induced promotion of mitochondrial function through the GPR81-ERK1/2 pathway.
Collapse
Affiliation(s)
- Qinghui Shang
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Xuepeng Bian
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Lutao Zhu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Jun Liu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Min Wu
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai 200438, China;
- Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, China; (X.B.); (M.W.)
| |
Collapse
|
9
|
Mohammad Nezhady MA, Modaresinejad M, Zia A, Chemtob S. Versatile lactate signaling via HCAR1: a multifaceted GPCR involved in many biological processes. Am J Physiol Cell Physiol 2023; 325:C1502-C1515. [PMID: 37899751 DOI: 10.1152/ajpcell.00346.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
G-coupled protein receptors (GPCRs) are the ultimate refuge of pharmacology and medicine as more than 40% of all marketed drugs are directly targeting these receptors. Through cell surface expression, they are at the forefront of cellular communication with the outside world. Metabolites among the conveyors of this communication are becoming more prominent with the recognition of them as ligands for GPCRs. HCAR1 is a GPCR conveyor of lactate. It is a class A GPCR coupled to Gαi which reduces cellular cAMP along with the downstream Gβγ signaling. It was first found to inhibit lipolysis, and lately has been implicated in diverse cellular processes, including neural activities, angiogenesis, inflammation, vision, cardiovascular function, stem cell proliferation, and involved in promoting pathogenesis for different conditions, such as cancer. Other than signaling from the plasma membrane, HCAR1 shows nuclear localization with different location-biased activities therein. Although different functions for HCAR1 are being discovered, its cell and molecular mechanisms are yet ill understood. Here, we provide a comprehensive review on HCAR1, which covers the literature on the subject, and discusses its importance and relevance in various biological phenomena.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Monir Modaresinejad
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Biomedical Sciences Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Aliabbas Zia
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Research Center of Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|