1
|
Sahlabgi A, Lupuliasa D, Stanciu G, Lupșor S, Vlaia LL, Rotariu R, Predescu NC, Rădulescu C, Olteanu RL, Stănescu SG, Hîncu L, Mititelu M. The Development and Comparative Evaluation of Rosemary Hydroalcoholic Macerate-Based Dermatocosmetic Preparations: A Study on Antioxidant, Antimicrobial, and Anti-Inflammatory Properties. Gels 2025; 11:149. [PMID: 40136854 PMCID: PMC11942321 DOI: 10.3390/gels11030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigates the development and comparative evaluation of new dermatocosmetic preparations based on hydroalcoholic macerates of rosemary (Rosmarinus officinalis L.), focusing on their antioxidant, antimicrobial, and anti-inflammatory properties. For this purpose, rosemary hydroalcoholic macerations were analyzed by evaluating the content of biologically active compounds, determining their antioxidant and antimicrobial capacity. Total polyphenol content (TPC), determined via the Folin-Ciocâlteu method, reached 2155 ± 2.45 mg GAE/100 g fresh weight in the 70% ethanol macerate (RDS2) of rosemary from Dobrogea, significantly exceeding (p < 0.05) the values observed in the Bulgarian samples. The highest antioxidant activity (745 ± 2.33 mg GAE/100 g fresh weight) correlated with this extraction. Atomic absorption spectroscopy (AAS) analysis revealed elevated calcium (119.5 mg/kg), zinc, and iron levels in Dobrogean rosemary compared to its Bulgarian counterparts. Antimicrobial assessments demonstrated that the 70% ethanol macerate (RDS2) of Dobrogean rosemary exhibited the strongest inhibitory effects, particularly against Staphylococcus aureus (inhibition zone: 11-23 mm), while its activity against Escherichia coli was moderate (10-17 mm at 30 µL). Candida albicans was also significantly inhibited, with an inhibition zone of 9-20 mm. In contrast, the Bulgarian rosemary macerate (RBS2) exhibited weak inhibition against the tested microorganisms. The higher antimicrobial activity of the RDS2 is likely due to its enriched polyphenolic content, including carnosic acid and rosmarinic acid, which are known for their bioactive properties. These findings highlight Dobrogean rosemary's superior bioactive properties, supporting its use in formulations with antioxidant and antimicrobial benefits.
Collapse
Affiliation(s)
- Alaa Sahlabgi
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania; (A.S.); (D.L.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania; (A.S.); (D.L.)
| | - Gabriela Stanciu
- Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania
| | - Simona Lupșor
- Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania
| | - Lavinia Lia Vlaia
- Department of Pharmaceutical Technology, Formulation and Technology of Drug Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ramona Rotariu
- Wastewater Testing Laboratory, RAJA, South Constanta, 900527 Constanta, Romania;
| | - Nicoleta Corina Predescu
- Preclinical Sciences Department, Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania;
| | - Cristiana Rădulescu
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania; (C.R.); (R.-L.O.)
| | - Radu-Lucian Olteanu
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania; (C.R.); (R.-L.O.)
| | - Sorina-Geanina Stănescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania;
| | - Lucian Hîncu
- Department of Drug Industry and Pharmaceutical Biotechnologies, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
2
|
Gómez de Cedrón M, Moreno-Rubio J, de la O Pascual V, Alvarez B, Villarino M, Sereno M, Gómez-Raposo C, Roa S, López Gómez M, Merino-Salvador M, Jiménez-Gordo A, Falagán S, Aguayo C, Zambrana F, Tabarés B, Garrido B, Cruz-Gil S, Fernández Díaz CM, Fernández LP, Molina S, Crespo MC, Ouahid Y, Montoya JJ, Ramos Ruíz R, Reglero G, Ramírez de Molina A, Casado E. Randomized clinical trial in cancer patients shows immune metabolic effects exerted by formulated bioactive phenolic diterpenes with potential clinical benefits. Front Immunol 2025; 16:1519978. [PMID: 40034703 PMCID: PMC11872936 DOI: 10.3389/fimmu.2025.1519978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Nutrients, including bioactive natural compounds, have been demonstrated to affect key metabolic processes implicated in tumor growth and progression, both in preclinical and clinical trials. Although the application of precision nutrition as a complementary approach to improve cancer treatments is still incipient in clinical practice, the development of powerful "omics" techniques has opened new possibilities for delivering nutritional advice to cancer patients. Precision nutrition may contribute to improving the plasticity and function of antitumor immune responses. Objectives Herein, we present the results of a randomized, prospective, longitudinal, double-blind, and parallel clinical trial (NCT05080920) in cancer patients to explore the immune-metabolic effects of a bioactive formula based on diterpenic phenols from rosemary, formulated with bioactive alkylglycerols (Lipchronic© WO/2017/187000). The trial involved cancer patients, including those with lung cancer (LC), colorectal cancer (CRC), and breast cancer (BC), undergoing chemotherapy, targeted biological therapy, and/or immunotherapy. The main readouts of the study were the analysis of Lip on systemic inflammation, hemogram profile, anthropometry, lipid and glucose profiles, and tolerability. Additionally, a deep immune phenotyping of peripheral blood mononuclear cells (PBMCs) was performed to identify the functional effects of Lip on key mediators of the immune system. Results Lip was well tolerated. The lung cancer subgroup of patients showed a reduction in biomarkers of systemic inflammation, including the neutrophil-to-lymphocyte ratio (NLR). Furthermore, modulation of key players in the immune system associated with the experimental treatment Lip compared to the control placebo (Pla) treatment was revealed, with particularities among the distinct subgroups of patients. Our results encourage further research to apply molecular nutrition-based strategies as a complementary tool in the clinical management of cancer patients, particularly in the current era of novel immunotherapies. Clinical trial registration ClinicalTrials.gov, identifier NCT05080920.
Collapse
Affiliation(s)
| | - Juan Moreno-Rubio
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Victor de la O Pascual
- Precision Nutrition and Cardiometabolic Health, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
- Faculty of Health Sciences, International University of La Rioja (UNIR), Logroño, Spain
| | - Beatriz Alvarez
- Centro Nacional de Investigaciones Cardiovasculares CarlosIII (CNIC Carlos III), Madrid, Spain
| | - Marta Villarino
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - María Sereno
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - César Gómez-Raposo
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Silvia Roa
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Miriam López Gómez
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - María Merino-Salvador
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Ana Jiménez-Gordo
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Sandra Falagán
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Cristina Aguayo
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Francisco Zambrana
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Beatriz Tabarés
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Beatriz Garrido
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
| | - Silvia Cruz-Gil
- Molecular Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | | | | | - Susana Molina
- Molecular Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | | | - Youness Ouahid
- MiRNAX Biosens Research & Development Unit (MBR&DU), Madrid, Spain
| | - Juan José Montoya
- MiRNAX Biosens Research & Development Unit (MBR&DU), Madrid, Spain
- Faculty of Medicine, School of Sport Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Guillermo Reglero
- Institute of Food Science Research CIAL CSIC-UAM, Madrid, Spain
- Production and Development of Foods for Health, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | | | - Enrique Casado
- Medical Oncology Department, Infanta Sofia University Hospital-Henares University Hospital-Foundation for Biomedical Research and Innovation (FIIB HUIS HHEN), Madrid, Spain
- Clinical Oncology Group, IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
3
|
Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206:107288. [PMID: 38977208 DOI: 10.1016/j.phrs.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuntao Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dandan Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yue Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Man Hao
- Clinical Medical College of Acuupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Ortho and MSK Science, University College London, London WC1E 6BT, UK.
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China; UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London WC1E 6BT, UK.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
4
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
5
|
Gómez de Cedrón M, Siles-Sanchez MDLN, Martín-Hernandez D, Jaime L, Santoyo S, Ramírez de Molina A. Novel bioactive extract from yarrow obtained by the supercritical antisolvent-assisted technique inhibits lipid metabolism in colorectal cancer. Front Bioeng Biotechnol 2024; 12:1256190. [PMID: 38576446 PMCID: PMC10991822 DOI: 10.3389/fbioe.2024.1256190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Altered lipid metabolism in cancer is associated to dissemination and prognosis. Bioactive compounds naturally occurring in Achillea millefolium L. (yarrow) have been reported to exert antitumour activities. Food biotechnology may provide on-demand mixtures of bioactive compounds with complementary activities in cancer treatment. Methods: Supercritical-antisolvent-precipitation (SAS) has been applied to fractionate the bioactive compounds from an Ultrasound-Assisted-Extraction yarrow extract resulting in two extracts with distinct polarity, yarrow-precipitate-(PP) and yarrow-separator-(Sep). Total phenolic content and relevant essential oils have been characterized. Antioxidant, anti-inflammatory and antiproliferative activities have been compared. Moreover, the effect on the inhibition of colorectal cancer cells' bioenergetics has been evaluated. Results: Yarrow-PP exerted the highest antioxidant activity, even higher than the complete UAE-yarrow extract, meanwhile yarrow-Sep showed the highest anti-inflammatory activity, even higher than the complete UAE-yarrow extract. Interestingly, yarrow-Sep inhibited key lipid metabolic targets in CRC cells extensively shown to be implicated in cancer dissemination and prognosis -SREBF1, FASN, ABCA1 and HMGCR- and epithelial to mesenchymal targets-CDH1, ATP1B1, CDH2 and Vimentin-augmenting cell adhesion. Conclusions: In summary, SAS technology has been applied to provide a novel combination of bioactive compounds, yarrow-Sep, which merits further research to be proposed as a potential complementary nutraceutical in the treatment of CRC.
Collapse
Affiliation(s)
| | | | - Diego Martín-Hernandez
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), Madrid, Spain
| | - Laura Jaime
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), Madrid, Spain
| | | |
Collapse
|
6
|
Xin Y, Liu CG, Zang D, Chen J. Gut microbiota and dietary intervention: affecting immunotherapy efficacy in non-small cell lung cancer. Front Immunol 2024; 15:1343450. [PMID: 38361936 PMCID: PMC10867196 DOI: 10.3389/fimmu.2024.1343450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. In recent years, treatment with immune checkpoint inhibitors (ICIs) has gradually improved the survival rate of patients with NSCLC, especially those in the advanced stages. ICIs can block the tolerance pathways that are overexpressed by tumor cells and maintain the protective activity of immune system components against cancer cells. Emerging clinical evidence suggests that gut microbiota may modulate responses to ICIs treatment, possibly holding a key role in tumor immune surveillance and the efficacy of ICIs. Studies have also shown that diet can influence the abundance of gut microbiota in humans, therefore, dietary interventions and the adjustment of the gut microbiota is a novel and promising treatment strategy for adjunctive cancer therapy. This review comprehensively summarizes the effects of gut microbiota, antibiotics (ATBs), and dietary intervention on the efficacy of immunotherapy in NSCLC, with the aim of informing the development of novel strategies in NSCLC immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
8
|
Wagner S, Gómez de Cedrón M, Navarro Del Hierro J, Martín-Hernández D, Siles MDLN, Santoyo S, Jaime L, Martín D, Fornari T, Ramírez de Molina A. Biological Activities of Miracle Berry Supercritical Extracts as Metabolic Regulators in Chronic Diseases. Int J Mol Sci 2023; 24:ijms24086957. [PMID: 37108121 PMCID: PMC10138767 DOI: 10.3390/ijms24086957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Synsepalum dulcificum (Richardella dulcifica) is a berry fruit from West Africa with the ability to convert the sour taste into a sweet taste, and for this reason, the fruit is also known as the "miracle berry" (MB). The red and bright berry is rich in terpenoids. The fruit's pulp and skin contain mainly phenolic compounds and flavonoids, which correlate with their antioxidant activity. Different polar extracts have been described to inhibit cell proliferation and transformation of cancer cell lines in vitro. In addition, MB has been shown to ameliorate insulin resistance in a preclinical model of diabetes induced by a chow diet enriched in fructose. Herein, we have compared the biological activities of three supercritical extracts obtained from the seed-a subproduct of the fruit-and one supercritical extract obtained from the pulp and the skin of MB. The four extracts have been characterized in terms of total polyphenols content. Moreover, the antioxidant, anti-inflammatory, hypo-lipidemic, and inhibition of colorectal cancer cell bioenergetics have been compared. Non-polar supercritical extracts from the seed are the ones with the highest effects on the inhibition of bioenergetic of colorectal (CRC) cancer cells. At the molecular level, the effects on cell bioenergetics seems to be related to the inhibition of main drivers of the de novo lipogenesis, such as the sterol regulatory element binding transcription factor (SREBF1) and downstream molecular targets fatty acid synthase (FASN) and stearoyl coenzyme desaturase 1 (SCD1). As metabolic reprograming is considered as one of the hallmarks of cancer, natural extracts from plants may provide complementary approaches in the treatment of cancer. Herein, for the first time, supercritical extracts from MB have been obtained, where the seed, a by-product of the fruit, seems to be rich in antitumor bioactive compounds. Based on these results, supercritical extracts from the seed merit further research to be proposed as co-adjuvants in the treatment of cancer.
Collapse
Affiliation(s)
- Sonia Wagner
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Joaquín Navarro Del Hierro
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
- Facultad de Veterinaria, Sección Departamental de Tecnología Alimentaria, Universidad Complutense de Madrid (ROR 02p0gd045), 28040 Madrid, Spain
| | - Diego Martín-Hernández
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - María de Las Nieves Siles
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Susana Santoyo
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Laura Jaime
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Diana Martín
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Tiziana Fornari
- Institute of Food Science and Research (CIAL), Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Universidad Autónoma de Madrid (CEI UAM + CSIC), 28049 Madrid, Spain
| |
Collapse
|