1
|
Tual M, Bellemare-Pelletier A, Moore S, Guipouy D, Farzam-Kia N, Jafarzadeh L, Quenneville J, Barrette B, Saba-El-Leil MK, Delisle JS, Gagnon E. MARC, a novel modular chimeric antigen receptor, improves T cell-based cancer immunotherapies by preventing early T cell exhaustion and enhancing persistence. J Immunother Cancer 2025; 13:e011829. [PMID: 40254394 PMCID: PMC12010287 DOI: 10.1136/jitc-2025-011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor T cell (CAR-T)-based immunotherapies have reshaped the therapeutic landscape of cancer treatment, in particular for patients afflicted with leukemia. However, defects in CAR behaviors and clinical complications have hindered their widespread application across diverse cancer types. Chief among these defects is high tonic signaling, absent in native activating immune receptors, which accelerates T cell exhaustion and undermines treatment efficacy. We hypothesized that these limitations arise because current CAR architectures fail to replicate the modular design of native activating immune receptors, which integrate distinct receptor and signaling modules. This modular assembly is crucial for maintaining proper receptor regulation and function. METHODS Therefore, we set forth to develop a modular chimeric antigen receptor leveraging the same assembly principles found in native activating immune receptors to reestablish the intrinsic safeguards in receptor expression and signaling. RESULTS The resulting Modular Actuation Receptor Complex (MARC) displayed surface expression levels akin to its native immune receptor counterpart, the NK cell receptor KIR2DS3, while eliminating tonic signaling. In a clinically relevant mouse leukemia model, MARC-T cells exhibited remarkable long-term persistence and a less exhausted phenotype compared with conventional CAR-T cells. CONCLUSIONS With its modular architecture, the MARC offers unparalleled opportunities for optimization and broad applicability across different cell types, paving the way for transformative advancements in cell-based therapies. This innovation holds immense promise as a next-generation therapeutic tool in clinical settings.
Collapse
Affiliation(s)
- Margaux Tual
- Département de microbiologie, Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Susan Moore
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | | | - Leila Jafarzadeh
- Médicine, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada
| | - Jordan Quenneville
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Benoit Barrette
- Département de biologie et pathologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Marc K Saba-El-Leil
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Etienne Gagnon
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de microbiobologie, infectriologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Graham LV, Khakoo SI, Blunt MD. NK Cells in the Lymph Nodes and Their Role in Anti-Tumour Immunity. Biomedicines 2024; 12:1667. [PMID: 39200132 PMCID: PMC11351147 DOI: 10.3390/biomedicines12081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The lymph nodes are vital to enable adaptive immune responses to infection. Natural killer (NK) cells are cytotoxic lymphocytes that directly kill cancer cells and modulate the activation of other immune cells during anti-tumour immune response. NK cells in the lymph nodes are involved in the regulation of T-cell and B-cell populations and the clearance of viral infections. In solid tumours, lymph nodes are a frequent site of metastasis and immune cell priming, whilst in haematological malignancies, tumour cells can proliferate in the lymph nodes. Thus, lymph nodes are an important site in anti-tumour immunity and therapy resistance. It is therefore crucial to identify strategies to increase recruitment and overcome suppression of NK cells in the lymph node microenvironment to improve tumour clearance. In this review, we summarise the literature interrogating NK cell phenotype and function in the lymph nodes in the context of infection and cancer and evaluate both current and potential strategies to mobilise and activate NK cells within the lymph nodes of cancer patients.
Collapse
Affiliation(s)
| | | | - Matthew D. Blunt
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
4
|
Yu J, Fu L, Zhang Z, Ding L, Hong L, Gao F, Jin J, Feng W, Fu J, Hong P, Xu C. Causal relationships between circulating inflammatory cytokines and diffuse large B cell lymphoma: a bidirectional Mendelian randomization study. Clin Exp Med 2023; 23:4585-4595. [PMID: 37910257 DOI: 10.1007/s10238-023-01221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Studies indicated that inflammatory cytokines involved in the occurrence and progression of DLBCL and it is challenging to discern causality from the effects due to the presence of feedback loops. We conducted a bidirectional Mendelian randomization (MR) study to investigate the potential causal relationship between DLBCL and inflammatory cytokines. The genetic variants associated with inflammatory cytokines were obtained from a genome-wide association study (GWAS) involving 8293 European participants, and the data on 1010 individuals with DLBCL were sourced from the FinnGen consortium. The primary method employed in this study was the inverse-variance weighted (IVW) method, with supplementary analyses conducted using the MR-Egger, weighted median, and MR-PRESSO approaches. Based on the IVW method, genetically predicted that increasing level of Monokine induced by interferon gamma (MIG/CXC chemokine ligand 9, CXCL9) [OR: 1.31; 95% CI: 1.05-1.62; P = 0.01] and interferon gamma-induced protein 10(IP-10/CXC chemokine ligand 10, CXCL10) [OR: 1.30; 95% CI: 1.02-1.66; P = 0.03] showed suggestive associations with DLBCL risk. DLBCL may increase the level of macrophage colony-stimulating factor (M-CSF) [OR: 1.12; 95% CI: 1.01-1.2; P = 0.03], tumor necrosis factor beta (TNF-β) [OR: 1.16; 95% CI: 1.02-1.31; P = 0.02] and TNF-related apoptosis-inducing ligand (TRAIL) [OR: 1.07; 95% CI: 1.01-1.13; P = 0.02]. This study presents evidence supporting a causal relationship between inflammation cytokines and DLBCL. Specifically, MIG/CXCL9 and IP-10/CXCL10 were identified as indicators of upstream causes of DLBCL; while, DLBCL itself was found to elevate the levels of M-CSF, TNF-β, and TRAIL. These findings suggest that targeting specific inflammatory factors through regulation and intervention could serve as a potential approach for the treatment and prevention of DLBCL.
Collapse
Affiliation(s)
- Jieni Yu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Leihua Fu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Zhijian Zhang
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Lina Ding
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Li Hong
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Feidan Gao
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Jing Jin
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Jiaping Fu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Pan Hong
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, People's Republic of China
| | - Chao Xu
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, People's Republic of China.
| |
Collapse
|