1
|
Gu C, ChenLiu Z, Wu Q, Tang D. ncRNAs as Key Regulators in Gastric Cancer: From Molecular Subtyping to Therapeutic Targets. Ann Surg Oncol 2025:10.1245/s10434-025-17368-9. [PMID: 40358781 DOI: 10.1245/s10434-025-17368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025]
Abstract
Gastric cancer (GC) poses a major global health challenge, underscoring the need for advanced diagnostic and therapeutic approaches. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as pivotal regulators in GC, with their dysregulated expression driving key processes such as tumorigenesis, metastasis, immune evasion, and chemoresistance. The functional diversity of ncRNAs across different GC molecular subtypes highlights their potential as biomarkers for improved subtype classification and patient stratification. Beyond their diagnostic value, ncRNAs demonstrate critical regulatory functions in tumor biology, establishing these RNA molecules as promising targets for therapeutic development. Strategies based on RNA hold considerable promise for addressing critical challenges such as immune escape and drug resistance by modulating key signaling pathways. These approaches can enhance immune responses, reprogram the tumor microenvironment, and reverse resistance mechanisms that compromise treatment efficacy, thereby improving clinical outcomes. Although ncRNAs represent a promising frontier in GC precision medicine, further research is required to fully harness their clinical potential.
Collapse
Affiliation(s)
- Chen Gu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhenni ChenLiu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qihang Wu
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Xuzhou Medical University, Yangzhou, China.
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian Medical University, Yangzhou, China.
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China.
| |
Collapse
|
2
|
Ding YH, Song XH, Chen JS. CircRNAs in Colorectal Cancer: Unveiling Their Roles and Exploring Therapeutic Potential. Biochem Genet 2025; 63:1219-1240. [PMID: 40029586 DOI: 10.1007/s10528-025-11068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is the most common malignancy of the digestive system. Although research into the causes of CRC's origin and progression has advanced over the past few decades, many details are still not fully understood. Circular RNAs (circRNAs), as a novel regulatory molecule, have been found to be closely involved in various key biological processes in CRC. CircRNAs also have been shown to encode proteins, which could offer new possibilities for therapeutic applications. This ability to produce tumor-specific proteins makes circRNA-based vaccines a potentially valuable approach for targeted cancer treatment. In this review, we summarize recent findings on the various roles of circRNAs in CRC and explore their potential in the development of protein-encoding circRNA vaccines for CRC therapy.
Collapse
Affiliation(s)
- Yi-Han Ding
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Xiao-Hang Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Jing-Song Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
3
|
Gondal MN, Farooqi HMU. Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer. Noncoding RNA 2025; 11:24. [PMID: 40126348 PMCID: PMC11932299 DOI: 10.3390/ncrna11020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in colorectal cancer (CRC) development and progression. Recent developments in single-cell transcriptome profiling methods have revealed surprising levels of expression variability among seemingly homogeneous cells, suggesting the existence of many more cell types than previously estimated. This review synthesizes recent advances in ncRNA research in CRC, emphasizing single-cell bioinformatics approaches for their analysis. We explore computational methods and tools used for ncRNA identification, characterization, and functional prediction in CRC, with a focus on single-cell RNA sequencing (scRNA-seq) data. The review highlights key bioinformatics strategies, including sequence-based and structure-based approaches, machine learning applications, and multi-omics data integration. We discuss how these computational techniques can be applied to analyze differential expression, perform functional enrichment, and construct regulatory networks involving ncRNAs in CRC. Additionally, we examine the role of bioinformatics in leveraging ncRNAs as diagnostic and prognostic biomarkers for CRC. We also discuss recent scRNA-seq studies revealing ncRNA heterogeneity in CRC. This review aims to provide a comprehensive overview of the current state of single-cell bioinformatics in ncRNA CRC research and outline future directions in this rapidly evolving field, emphasizing the integration of computational approaches with experimental validation to advance our understanding of ncRNA biology in CRC.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hafiz Muhammad Umer Farooqi
- Laboratory of Energy Metabolism, Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, CA 92868, USA
| |
Collapse
|
4
|
Yang J, Luo Y, Yao Z, Wang Z, Jiang K. Theoretical perspectives and clinical applications of non-coding RNA in lung cancer metastasis: a systematic review. Discov Oncol 2025; 16:169. [PMID: 39937377 PMCID: PMC11822152 DOI: 10.1007/s12672-025-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer is one of the deadliest malignancies worldwide, with distant metastasis being a major cause of death. However, the specific mechanisms of lung cancer metastasis remain unclear. NcRNAs, a widely present type of non-coding RNAs in the body, constitute about 98% of the human genome, lacking protein-coding capacity but involved in various cellular processes such as proliferation, apoptosis, invasion, and migration. Studies have shown that ncRNAs play a crucial role in the metastasis of lung cancer, although research in this area is limited. This review summarizes the biological origins and functions of ncRNAs, their specific roles and mechanisms in lung cancer metastasis, and discusses their potential for early screening and therapeutic applications in lung cancer. Furthermore, it outlines the challenges in translating basic advancements of ncRNAs in lung cancer metastasis into clinical practice.
Collapse
Affiliation(s)
- Jie Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Yi Luo
- The Clinical Medical College, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Zuhuan Yao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Ma Q, Yang F, Xiao B, Guo X. Emerging roles of circular RNAs in tumorigenesis, progression, and treatment of gastric cancer. J Transl Med 2024; 22:207. [PMID: 38414006 PMCID: PMC10897999 DOI: 10.1186/s12967-024-05001-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
With an estimated one million new cases reported annually, gastric cancer (GC) ranks as the fifth most diagnosed malignancy worldwide. The early detection of GC remains a major challenge, and the prognosis worsens either when patients develop resistance to chemotherapy or radiotherapy or when the cancer metastasizes. The precise pathogenesis underlying GC is not well understood, which further complicates its treatment. Circular RNAs (circRNAs), a recently discovered class of noncoding RNAs that originate from parental genes through "back-splicing", have been shown to play a key role in various biological processes in both eukaryotes and prokaryotes. CircRNAs have been linked to cardiovascular diseases, diabetes, hypertension, Alzheimer's disease, and the occurrence and progression of tumors. Prior studies have established that circRNAs play a crucial role in GC, impacting tumorigenesis, diagnosis, progression, and therapy resistance. This review aims to summarize how circRNAs contribute to GC tumorigenesis and progression, examine their roles in the development of drug resistance, discuss their potential as biotechnological drugs, and summarize their response to therapeutic drugs and microorganism in GC.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- Translational Medicine Research Center & School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
6
|
Yue X, Lan F, Liu W. Serum exosomal circCCDC66 as a potential diagnostic and prognostic biomarker for pituitary adenomas. Front Oncol 2023; 13:1268778. [PMID: 38098508 PMCID: PMC10720038 DOI: 10.3389/fonc.2023.1268778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose Circular RNAs (circRNAs) play an important role in tumorigenesis, and exosomal circRNAs have the potential to be novel biomarkers for cancer diagnosis. Here, we are committed to reveal serum exosomal circCCDC66 as a noninvasive biomarker to diagnose and predict recurrence in pituitary adenoma (PA). Methods A total of 90 PA patients and 50 healthy subjects were enrolled for clinical validation. Exosomes were extracted from the serum and validated by transmission electron microscopy, nanoparticle tracking analysis, and Western blot assay. The expression of circCCDC66 in serum exosomes was assessed using quantitative real-time PCR (qRT-PCR), and correlations between circCCDC66 expression and clinicopathological factors were analyzed. The reliability of serum exosomal circCCDC66 to diagnose PA was evaluated using receiver operating characteristic (ROC) analysis. Results Initially, an obviously significantly increasing level of serum exosomal circCCDC66 was verified in the PA specimens compared with healthy controls. Importantly, serum exosomal circCCDC66, which was secreted and released by PA cells, could monitor tumor dynamics and serve as a potentially prognostic biomarker during treatment. Additionally, ROC curve analysis was performed and the corresponding area under the curve (AUC) values were used to confirm the ability of serum exosomal circCCDC66 as a potentially diagnostic and prognostic biomarker for PA patients. Importantly, the progression-free survival was much longer in the low serum exosomal circCCDC66 group than in the high serum exosomal circCCDC66 group. Conclusion Serum exosomal circCCDC66 is abnormally elevated and may serve as a promising factor for the diagnosis of and predicting prognosis in PA patients.
Collapse
Affiliation(s)
- Xiao Yue
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Fengming Lan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|