1
|
AlDawsari M, Al-Ansari MM, AlMalki RH, Rahman AMA, Al-Alwan M. The MDA-MB-231 Breast Cancer Cell Secretomes Modify Metabolomes of Pseudomonas aeruginosa Breast Microbiome. Int J Mol Sci 2025; 26:5003. [PMID: 40507816 PMCID: PMC12155445 DOI: 10.3390/ijms26115003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Breast cancer (BC) is globally becoming a great challenge, being both the most diagnosed cancer and the leading cause of death in women. In addition to cancer cells, many bacteria co-inhabit BC, which differ in type and number from the resident microbiota found in healthy breast tissue. While many reports have demonstrated the ability of different bacteria to dysregulate BC's metabolites, the reciprocal effect of these metabolites on the bacterial microbiota has not yet been investigated. Herein, we assess the effect of conditioned media (CM) from a triple-negative BC cell line (MDA-MB-231) on the metabolic profile of Pseudomonas aeruginosa (P. aeruginosa), an important breast resident Gram-negative bacteria that influence oncogenesis. Optical density and scanning electron microscopes were used to assess the impact of MDA-MB-231-CM (BC-CM) on P. aeruginosa growth and morphological changes, respectively. In addition, liquid chromatography-high-resolution mass spectrometry was used to identify metabolic changes in P. aeruginosa and their secretomes in response to the BC-CM. The BC-CM significantly suppressed the growth of P. aeruginosa in the log phase and induced concentration-dependent cytopathological changes in their cell walls. The metabolites of P. aeruginosa were dysregulated considerably depending on the time of exposure to the BC-CM. When treated with the BC-CM, P. aeruginosa induced the purine alkaloid spliceostatin (FR901464), a prominent antitumor metabolite. The BC-CM also promoted other P. aeruginosa metabolites such as amino acids, phosphoribosyl-AMP, 2-aminoacetophenone, pyochelin I, guanosine monophosphate, riboflavin, and terpenoids, which are capable of interfering with oncogenesis. Nine of the significantly identified metabolites from the 0-3 h comparison and four of those identified from the 0-6 h comparison have potential roles in influencing cancer cell behavior. Our findings demonstrate the ability of triple-negative BC-CM not only to alter the growth and morphology of P. aeruginosa but also to modulate their metabolic profile. A better understanding of the influence of BC on certain resident breast microbiomes, such as P. aeruginosa, may open a new therapeutic intervention opportunity for the treatment of cancer.
Collapse
Affiliation(s)
- Majdoleen AlDawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Cell Therapy and Immunobiology Department, Research and Innovation, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Reem H. AlMalki
- Metabolomics Section, Precision Medicine Laboratory Department, Genomics Medicine Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; (R.H.A.); (A.M.A.R.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Precision Medicine Laboratory Department, Genomics Medicine Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; (R.H.A.); (A.M.A.R.)
- Department of Biochemistry and Molecular Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Monther Al-Alwan
- Cell Therapy and Immunobiology Department, Research and Innovation, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
2
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
3
|
Nair R, Vu AH, Freer AK, Bhatia KS, Wang D, Savani MR, Matulis SM, Lonial S, Jaye DL, Boise LH, Seo SY, Corson TW, Nooka AK, Bhatt S, McBrayer SK, Gupta VA, Hu X, Barwick BG, Reddi AR, Shanmugam M. Heme promotes venetoclax resistance in multiple myeloma through MEK-ERK signaling and purine biosynthesis. Blood 2025; 145:732-747. [PMID: 39693611 PMCID: PMC12060166 DOI: 10.1182/blood.2024025690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
ABSTRACT We previously demonstrated that reduced intrinsic electron transport chain (ETC) activity predicts and promotes sensitivity to the B-cell lymphoma 2 (BCL-2) antagonist, venetoclax (Ven), in multiple myeloma (MM). Heme, an iron-containing prosthetic group and metabolite, is fundamental to maintaining ETC activity. Interrogation of the cyclin D1 group 2 subgroup of MM from the Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) trial (NCT01454297), which can be used as a proxy for Ven-sensitive MM (VS MM), shows reduced expression of the conserved heme biosynthesis pathway gene signature. Consistent with this, we identified that VS MM exhibits reduced heme biosynthesis and curiously elevated hemin (oxidized heme) uptake. Supplementation with hemin or protoporphyrin IX (heme lacking iron) promotes Ven resistance, whereas targeting ferrochetalase, the penultimate enzyme involved in heme biosynthesis, increases Ven sensitivity in cell lines and primary MM cells. Mechanistically, heme-mediated activation of prosurvival rapidly accelerated fibrosarcoma-rat sarcoma virus-mitogen-activated protein kinase (MEK) signaling and metabolic rewiring, increasing de novo purine synthesis, were found to contribute to heme-induced Ven resistance. Cotargeting BCL-2 and myeloid cell leukemia-1 suppresses heme-induced Ven resistance. Interrogation of the Multiple Myeloma Research Foundation CoMMpass study of patients shows increased purine and pyrimidine biosynthesis to corelate with poor progression-free survival and overall survival. Elevated heme and purine biosynthesis gene signatures were also observed in matched relapse refractory MM, underscoring the relevance of heme metabolism in therapy-refractory MM. Overall, our findings reveal, for the first time, a role for extrinsic heme, a physiologically relevant metabolite, in modulating proximity to the apoptotic threshold with translational implications for BCL-2 antagonism in MM therapy.
Collapse
Affiliation(s)
- Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - An H. Vu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Abigail K. Freer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Karanpreet S. Bhatia
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Dongxue Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Milan R. Savani
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - David L. Jaye
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Timothy W. Corson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ajay K. Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore
| | - Samuel K. McBrayer
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Xin Hu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
4
|
Huang Y, He C, Hu Q, Liu Z, Li X, Gao W, Liang X, Chen R, Mao Z, Lin X. Metabolic Atlas of Human Eyelid Infiltrative Basal Cell Carcinoma. Invest Ophthalmol Vis Sci 2025; 66:11. [PMID: 39775699 PMCID: PMC11717128 DOI: 10.1167/iovs.66.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose Eyelid infiltrative basal cell carcinoma (iBCC) is the most common malignant tumor affecting the ocular adnexa, but studies on metabolic changes within its microenvironment and heterogeneity at the tumor invasive area are limited. This study aims to analyze metabolic differences among iBCC cell types using single-cell and spatial metabolomics analysis and to examine metabolic environment at the tumor invasive area. Methods Single-cell transcriptomic data of human basal cell carcinoma (BCC) were clustered and visualized using Uniform Manifold Approximation and Projection. Metabolic reprogramming was analyzed with single-cell flux estimation analysis. Spatial metabolomics data were obtained with the Timstof Flex MALDI 2 system, and Bruker software was used for region selection. Results Eight cell types were identified within the iBCC microenvironment. Differences between inflammatory cancer-associated fibroblasts and myofibroblastic cancer-associated fibroblasts were analyzed. Metabolic flux analysis showed increased glycolysis, glutamine, heme, and glutathione fluxes in the iBCC microenvironment. Spatial metabolomics revealed high levels of taurine, deoxy-GMP, O-phosphoethanolamine, and pyrithione. Both tumor and invasive regions had significant upregulation of fatty acid pathways, with marked increases in oleic and arachidonic acids at the invasive area. Specific upregulation of UDP-glucuronic acid and high UDP-glucose 6-dehydrogenase (UGDH) expression in the tumor region suggest UXS1 as a potential therapeutic target for iBCC. Conclusions This study establishes a metabolic microenvironment atlas of iBCC, revealing significant metabolic differences and the dominance of lipid and lysosome metabolism. Potential metabolic markers and characteristic substances in the invasive area offer new insights for immunotherapy and the exploration of BCC's metabolic mechanisms.
Collapse
Affiliation(s)
- Yanjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chengjie He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuanwei Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
6
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Zhu X, Zheng W, Wang X, Li Z, Shen X, Chen Q, Lu Y, Chen K, Ai S, Zhu Y, Guan W, Yao S, Liu S. Enhanced Photodynamic Therapy Synergizing with Inhibition of Tumor Neutrophil Ferroptosis Boosts Anti-PD-1 Therapy of Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307870. [PMID: 38233204 DOI: 10.1002/advs.202307870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/19/2024]
Abstract
For tumor treatment, the ultimate goal in tumor therapy is to eliminate the primary tumor, manage potential metastases, and trigger an antitumor immune response, resulting in the complete clearance of all malignant cells. Tumor microenvironment (TME) refers to the local biological environment of solid tumors and has increasingly become an attractive target for cancer therapy. Neutrophils within TME of gastric cancer (GC) spontaneously undergo ferroptosis, and this process releases oxidized lipids that limit T cell activity. Enhanced photodynamic therapy (PDT) mediated by di-iodinated IR780 (Icy7) significantly increases the production of reactive oxygen species (ROS). Meanwhile, neutrophil ferroptosis can be triggered by increased ROS generation in the TME. In this study, a liposome encapsulating both ferroptosis inhibitor Liproxstatin-1 and modified photosensitizer Icy7, denoted LLI, significantly inhibits tumor growth of GC. LLI internalizes into MFC cells to generate ROS causing immunogenic cell death (ICD). Simultaneously, liposome-deliver Liproxstatin-1 effectively inhibits the ferroptosis of tumor neutrophils. LLI-based immunogenic PDT and neutrophil-targeting immunotherapy synergistically boost the anti-PD-1 treatment to elicit potent TME and systemic antitumor immune response with abscopal effects. In conclusion, LLI holds great potential for GC immunotherapy.
Collapse
Affiliation(s)
- Xudong Zhu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxuan Zheng
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xingzhou Wang
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhiyan Li
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaofei Shen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qi Chen
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China
| | - Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Kai Chen
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shichao Ai
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song Liu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
8
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|