1
|
Zhang P, Wei L, Nie Z, Hu P, Zheng J, Lv J, Cui T, Liu C, Lan X. Research on the developments of artificial intelligence in radiomics for oncology over the past decade: a bibliometric and visualized analysis. Discov Oncol 2025; 16:763. [PMID: 40366503 PMCID: PMC12078899 DOI: 10.1007/s12672-025-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE To assess the publications' bibliographic features and look into how the advancement of artificial intelligence (AI) and its subfields in radiomics has affected the growth of oncology. METHODS The researchers conducted a search in the Web of Science (WoS) for scientific publications in cancer pertaining to AI and radiomics, published in English from 1 January 2015 to 31 December 2024.The research included a scientometric methodology and comprehensive data analysis utilising scientific visualization tools, including the Bibliometrix R software package, VOSviewer, and CiteSpace. Bibliometric techniques utilised were co-authorship, co-citation, co-occurrence, citation burst, and performance Analysis. RESULTS The final study encompassed 4,127 publications authored by 5,026 individuals and published across 597 journals. China (2087;50.57%) and USA (850;20.6%) were the two most productive countries. The authors with the highest publication counts were Tian Jie (60) and Cuocolo Renato (30). Fudan University (169;4.09%) and Sun Yat-sen University (162;3.93%) were the most active institutions. The foremost journals were Frontiers in Oncology and Cancer. The predominant author keywords were radiomics, artificial intelligence, and oncology research. CONCLUSION Investigations into the integration of AI with radiomics in oncology remain nascent, with numerous studies concentrating on biology, diagnosis, treatment, and cancer risk evaluation.
Collapse
Affiliation(s)
- Pengyu Zhang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
- School of Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lili Wei
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Zonglong Nie
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Pengcheng Hu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Jilu Zheng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Ji Lv
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Tao Cui
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Chunlei Liu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Xiaopeng Lan
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
2
|
Yang N, Ma Z, Zhang L, Ji W, Xi Q, Li M, Jin L. Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography. Abdom Radiol (NY) 2025; 50:2126-2139. [PMID: 39572431 PMCID: PMC11992001 DOI: 10.1007/s00261-024-04685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 04/12/2025]
Abstract
BACKGROUND & AIMS Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis of radiomics from unenhanced CT images. METHODS We enrolled 260 patients from 2 medical centers who underwent CT examinations between January 2017 and March 2023. This included 60 cases of hepatic malignancies, 93 cases of hepatic hemangiomas, 48 cases of hepatic abscesses, and 84 cases of hepatic cysts. The Pyradiomics method was used to extract radiomics features from unenhanced CT images. By using the mljar-supervised (MLJAR) AutoML framework, clinical, radiomics, and fusion models combining clinical and radiomics features were established. RESULTS In the training and validation sets, the area under the curve (AUC) values for the clinical, radiomics, and fusion models exceeded 0.900. In the external testing set, the respective AUC values for the clinical, radiomics, and fusion models were as follows: 0.88, 1.00, and 1.00 for hepatic cysts; 0.81, 0.90, and 0.97 for hepatic hemangiomas; 0.89, 0.98, and 0.92 for hepatic abscesses; and 0.23, 0.80, and 0.93 for hepatic malignancies. The diagnostic accuracy rates for hepatic cysts, hemangiomas, malignancies, and abscesses by radiologists in the external testing cohort were 0.96, 0.60, 0.79, and 0.66, respectively. CONCLUSION The fusion model based on noninvasive radiomics and clinical features of unenhanced CT images has high clinical value for distinguishing focal hepatic lesions.
Collapse
Affiliation(s)
- Nan Yang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhuangxuan Ma
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Ling Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenbin Ji
- Radiology Department, Shanghai Electric Power Hospital, Shanghai, China
| | - Qian Xi
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai, China.
| | - Ming Li
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Ota T, Onishi H, Fukui H, Tsuboyama T, Nakamoto A, Honda T, Matsumoto S, Tatsumi M, Tomiyama N. Prediction models for differentiating benign from malignant liver lesions based on multiparametric dual-energy non-contrast CT. Eur Radiol 2025; 35:1361-1377. [PMID: 39186105 PMCID: PMC11836082 DOI: 10.1007/s00330-024-11024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To create prediction models (PMs) for distinguishing between benign and malignant liver lesions using quantitative data from dual-energy CT (DECT) without contrast agents. MATERIALS AND METHODS This retrospective study included patients with liver lesions who underwent DECT, including non-contrast-enhanced scans. Benign lesions included hepatic hemangioma, whereas malignant lesions included hepatocellular carcinoma, metastatic liver cancer, and intrahepatic cholangiocellular carcinoma. Patients were divided into derivation and validation groups. In the derivation group, two radiologists calculated ten multiparametric data using univariate and multivariate logistic regression to generate PMs. In the validation group, two additional radiologists measured the parameters to assess the diagnostic performance of PMs. RESULTS The study included 121 consecutive patients (mean age 67.4 ± 13.8 years, 80 males), with 97 in the derivation group (25 benign and 72 malignant) and 24 in the validation group (7 benign and 17 malignant). Oversampling increased the benign lesion sample to 75, equalizing the malignant group for building PMs. All parameters were statistically significant in univariate analysis (all p < 0.05), leading to the creation of five PMs in multivariate analysis. The area under the curve for the five PMs of two observers was as follows: PM1 (slope K, blood) = 0.76, 0.74; PM2 (slope K, fat) = 0.55, 0.51; PM3 (effective-Z difference, blood) = 0.75, 0.72; PM4 (slope K, blood, fat) = 0.82, 0.78; and PM5 (slope K, effective-Z difference, blood) = 0.90, 0.87. PM5 yielded the best diagnostic performance. CONCLUSION Multiparametric non-contrast-enhanced DECT is a highly effective method for distinguishing between liver lesions. CLINICAL RELEVANCE STATEMENT The utilization of non-contrast-enhanced DECT is extremely useful for distinguishing between benign and malignant liver lesions. This approach enables physicians to plan better treatment strategies, alleviating concerns associated with contrast allergy, contrast-induced nephropathy, radiation exposure, and excessive medical expenses. KEY POINTS Distinguishing benign from malignant liver lesions with non-contrast-enhanced CT would be desirable. This model, incorporating slope K, effective Z, and blood quantification, distinguished benign from malignant liver lesions. Non-contrast-enhanced DECT has benefits, particularly in patients with an iodine allergy, renal failure, or asthma.
Collapse
Affiliation(s)
- Takashi Ota
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Hiromitsu Onishi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideyuki Fukui
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Tsuboyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Nakamoto
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Honda
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shohei Matsumoto
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mitsuaki Tatsumi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Park JH, Cho ES, Yoon J, Rhee HJ, Park J, Choi JY, Chung YE. MRI radiomics model differentiates small hepatic metastases and abscesses in periampullary cancer patients. Sci Rep 2024; 14:23541. [PMID: 39384874 PMCID: PMC11464643 DOI: 10.1038/s41598-024-74311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
This multi-center, retrospective study focused on periampullary cancer patients undergoing MRI for hepatic metastasis and abscess differentiation. T1-weighted, T2-weighted, and arterial phase images were utilized to create radiomics models. In the training-set, 112 lesions in 54 patients (median age [IQR, interquartile range], 73 [63-80]; 38 men) were analyzed, and 123 lesions in 55 patients (72 [66-78]; 34 men) comprised the validation set. The T1-weighted + T2-weighted radiomics model showed the highest AUC (0.82, 95% CI 0.75-0.89) in the validation set. Notably, < 30% T1-T2 size discrepancy in MRI findings predicted metastasis (Ps ≤ 0.037), albeit with AUCs of 0.64-0.68 for hepatic metastasis. The radiomics model enhanced radiologists' performance (AUCs, 0.85-0.87 vs. 0.80-0.84) and significantly increased diagnostic confidence (P < 0.001). Although the performance increase lacked statistical significance (P = 0.104-0.281), the radiomics model proved valuable in differentiating small hepatic lesions and enhancing diagnostic confidence. This study highlights the potential of MRI-based radiomics in improving accuracy and confidence in the diagnosis of periampullary cancer-related hepatic lesions.
Collapse
Affiliation(s)
- Jae Hyon Park
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Armed Forces Daejeon Hospital, Daejeon, Republic of Korea
| | - Eun-Suk Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongjin Yoon
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Jin Rhee
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June Park
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Radiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Dimopoulos P, Mulita A, Antzoulas A, Bodard S, Leivaditis V, Akrida I, Benetatos N, Katsanos K, Anagnostopoulos CN, Mulita F. The role of artificial intelligence and image processing in the diagnosis, treatment, and prognosis of liver cancer: a narrative-review. PRZEGLAD GASTROENTEROLOGICZNY 2024; 19:221-230. [PMID: 39802971 PMCID: PMC11718495 DOI: 10.5114/pg.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/29/2024] [Indexed: 12/09/2024]
Abstract
Artificial intelligence (AI) and image processing are revolutionising the diagnosis and management of liver cancer. Recent advancements showcase AI's ability to analyse medical imaging data, like computed tomography scans and magnetic resonance imaging, accurately detecting and classifying liver cancer lesions for early intervention. Predictive models aid prognosis estimation and recurrence pattern identification, facilitating personalised treatment planning. Image processing techniques enhance data analysis by precise segmentation of liver structures, fusion of information from multiple modalities, and feature extraction for informed decision-making. Despite progress, challenges persist, including the need for standardised datasets and regulatory considerations.
Collapse
Affiliation(s)
- Platon Dimopoulos
- Department of Interventional Radiology, General University Hospital of Patras, Patras, Greece
| | - Admir Mulita
- Medical Physics Department, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
- Intelligent Systems Lab, Department of Cultural Technology and Communication, University of the Aegean, Mytilene, Greece
| | - Andreas Antzoulas
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Sylvain Bodard
- Department of Radiology, University of Paris Cite, Necker Hospital, Paris, France
| | - Vasileios Leivaditis
- Department of Cardiothoracic and Vascular Surgery, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Ioanna Akrida
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Nikolaos Benetatos
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Konstantinos Katsanos
- Department of Interventional Radiology, General University Hospital of Patras, Patras, Greece
| | | | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| |
Collapse
|
6
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
7
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Zhang HW, Huang DL, Wang YR, Zhong HS, Pang HW. CT radiomics based on different machine learning models for classifying gross tumor volume and normal liver tissue in hepatocellular carcinoma. Cancer Imaging 2024; 24:20. [PMID: 38279133 PMCID: PMC10811872 DOI: 10.1186/s40644-024-00652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/29/2023] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND & AIMS The present study utilized extracted computed tomography radiomics features to classify the gross tumor volume and normal liver tissue in hepatocellular carcinoma by mainstream machine learning methods, aiming to establish an automatic classification model. METHODS We recruited 104 pathologically confirmed hepatocellular carcinoma patients for this study. GTV and normal liver tissue samples were manually segmented into regions of interest and randomly divided into five-fold cross-validation groups. Dimensionality reduction using LASSO regression. Radiomics models were constructed via logistic regression, support vector machine (SVM), random forest, Xgboost, and Adaboost algorithms. The diagnostic efficacy, discrimination, and calibration of algorithms were verified using area under the receiver operating characteristic curve (AUC) analyses and calibration plot comparison. RESULTS Seven screened radiomics features excelled at distinguishing the gross tumor area. The Xgboost machine learning algorithm had the best discrimination and comprehensive diagnostic performance with an AUC of 0.9975 [95% confidence interval (CI): 0.9973-0.9978] and mean MCC of 0.9369. SVM had the second best discrimination and diagnostic performance with an AUC of 0.9846 (95% CI: 0.9835- 0.9857), mean Matthews correlation coefficient (MCC)of 0.9105, and a better calibration. All other algorithms showed an excellent ability to distinguish between gross tumor area and normal liver tissue (mean AUC 0.9825, 0.9861,0.9727,0.9644 for Adaboost, random forest, logistic regression, naivem Bayes algorithm respectively). CONCLUSION CT radiomics based on machine learning algorithms can accurately classify GTV and normal liver tissue, while the Xgboost and SVM algorithms served as the best complementary algorithms.
Collapse
Affiliation(s)
- Huai-Wen Zhang
- Department of Radiotherapy, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, 330029, Nanchang, China
- Department of Oncology, The third people's hospital of Jingdezhen, The third people's hospital of Jingdezhen affiliated to Nanchang Medical College, 333000, Jingdezhen, China
| | - De-Long Huang
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yi-Ren Wang
- School of Nursing, Southwest Medical University, 646000, Luzhou, China
| | - Hao-Shu Zhong
- Department of Hematology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Hao-Wen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
| |
Collapse
|
9
|
Berbís MÁ, Godino FP, Rodríguez-Comas J, Nava E, García-Figueiras R, Baleato-González S, Luna A. Radiomics in CT and MR imaging of the liver and pancreas: tools with potential for clinical application. Abdom Radiol (NY) 2024; 49:322-340. [PMID: 37889265 DOI: 10.1007/s00261-023-04071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Radiomics allows the extraction of quantitative imaging features from clinical magnetic resonance imaging (MRI) and computerized tomography (CT) studies. The advantages of radiomics have primarily been exploited in oncological applications, including better characterization and staging of oncological lesions and prediction of patient outcomes and treatment response. The potential introduction of radiomics in the clinical setting requires the establishment of a standardized radiomics pipeline and a quality assurance program. Radiomics and texture analysis of the liver have improved the differentiation of hypervascular lesions such as adenomas, focal nodular hyperplasia, and hepatocellular carcinoma (HCC) during the arterial phase, and in the pretreatment determination of HCC prognostic factors (e.g., tumor grade, microvascular invasion, Ki-67 proliferation index). Radiomics of pancreatic CT and MR images has enhanced pancreatic ductal adenocarcinoma detection and its differentiation from pancreatic neuroendocrine tumors, mass-forming chronic pancreatitis, or autoimmune pancreatitis. Radiomics can further help to better characterize incidental pancreatic cystic lesions, accurately discriminating benign from malignant intrapancreatic mucinous neoplasms. Nonetheless, despite their encouraging results and exciting potential, these tools have yet to be implemented in the clinical setting. This non-systematic review will describe the essential steps in the implementation of the radiomics and feature extraction workflow from liver and pancreas CT and MRI studies for their potential clinical application. A succinct overview of reported radiomics applications in the liver and pancreas and the challenges and limitations of their implementation in the clinical setting is also discussed, concluding with a brief exploration of the future perspectives of radiomics in the gastroenterology field.
Collapse
Affiliation(s)
- M Álvaro Berbís
- Department of Radiology, HT Médica, San Juan de Dios Hospital, 14960, Córdoba, Spain.
- Department of Radiology, HT Médica, San Juan de Dios Hospital, Av. del Brillante, 106, 14012, Córdoba, Spain.
| | | | | | - Enrique Nava
- Department of Communications Engineering, University of Málaga, 29016, Málaga, Spain
| | - Roberto García-Figueiras
- Abdominal Imaging Section, University Clinical Hospital of Santiago, 15706, Santiago de Compostela, A Coruña, Spain
| | - Sandra Baleato-González
- Abdominal Imaging Section, University Clinical Hospital of Santiago, 15706, Santiago de Compostela, A Coruña, Spain
| | - Antonio Luna
- Department of Radiology, HT Médica, Clínica las Nieves, 23007, Jaén, Spain
| |
Collapse
|
10
|
Xue P, Xi H, Chen H, He S, Liu X, Du B. Predictive value of clinical features and CT radiomics in the efficacy of hip preservation surgery with fibula allograft. J Orthop Surg Res 2023; 18:940. [PMID: 38062463 PMCID: PMC10704794 DOI: 10.1186/s13018-023-04431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Despite being an effective treatment for osteonecrosis of the femoral head (ONFH), hip preservation surgery with fibula allograft (HPS&FA) still experiences numerous failures. Developing a prediction model based on clinical and radiomics predictors holds promise for addressing this issue. METHODS This study included 112 ONFH patients who underwent HPS&FA and were randomly divided into training and validation cohorts. Clinical data were collected, and clinically significant predictors were identified using univariate and multivariate analyses to develop a clinical prediction model (CPM). Simultaneously, the least absolute shrinkage and selection operator method was employed to select optimal radiomics features from preoperative hip computed tomography images, forming a radiomics prediction model (RPM). Furthermore, to enhance prediction accuracy, a clinical-radiomics prediction model (CRPM) was constructed by integrating all predictors. The predictive performance of the models was evaluated using receiver operating characteristic curve (ROC), area under the curve (AUC), DeLong test, calibration curve, and decision curve analysis. RESULTS Age, Japanese Investigation Committee classification, postoperative use of glucocorticoids or alcohol, and non-weightbearing time were identified as clinical predictors. The AUC of the ROC curve for the CPM was 0.847 in the training cohort and 0.762 in the validation cohort. After incorporating radiomics features, the CRPM showed improved AUC values of 0.875 in the training cohort and 0.918 in the validation cohort. Decision curves demonstrated that the CRPM yielded greater medical benefit across most risk thresholds. CONCLUSION The CRPM serves as an efficient prediction model for assessing HPS&FA efficacy and holds potential as a personalized perioperative intervention tool to enhance HPS&FA success rates.
Collapse
Affiliation(s)
- Peng Xue
- The First School of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
| | - Hongzhong Xi
- The First School of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
| | - Hao Chen
- The First School of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
| | - Shuai He
- The First School of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China
| | - Xin Liu
- The First School of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China.
| | - Bin Du
- The First School of Clinical Medicine of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road 155, Nanjing, 210029, China.
| |
Collapse
|
11
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
12
|
Anichini M, Galluzzo A, Danti G, Grazzini G, Pradella S, Treballi F, Bicci E. Focal Lesions of the Liver and Radiomics: What Do We Know? Diagnostics (Basel) 2023; 13:2591. [PMID: 37568954 PMCID: PMC10417608 DOI: 10.3390/diagnostics13152591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Despite differences in pathological analysis, focal liver lesions are not always distinguishable in contrast-enhanced magnetic resonance imaging (MRI), contrast-enhanced computed tomography (CT), and positron emission tomography (PET). This issue can cause problems of differential diagnosis, treatment, and follow-up, especially in patients affected by HBV/HCV chronic liver disease or fatty liver disease. Radiomics is an innovative imaging approach that extracts and analyzes non-visible quantitative imaging features, supporting the radiologist in the most challenging differential diagnosis when the best-known methods are not conclusive. The purpose of this review is to evaluate the most significant CT and MRI texture features, which can discriminate between the main benign and malignant focal liver lesions and can be helpful to predict the response to pharmacological or surgical therapy and the patient's prognosis.
Collapse
Affiliation(s)
| | | | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy; (M.A.); (A.G.); (G.G.); (S.P.); (F.T.); (E.B.)
| | | | | | | | | |
Collapse
|
13
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
14
|
Bao J, Feng X, Ma Y, Wang Y, Qi J, Qin C, Tan X, Tian Y. The latest application progress of radiomics in prediction and diagnosis of liver diseases. Expert Rev Gastroenterol Hepatol 2022; 16:707-719. [PMID: 35880549 DOI: 10.1080/17474124.2022.2104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Early detection and individualized treatment of patients with liver disease is the key to survival. Radiomics can extract high-throughput quantitative features by multimode imaging, which has good application prospects for the diagnosis, staging and prognosis of benign and malignant liver diseases. Therefore, this paper summarizes the current research status in the field of liver disease, in order to help these patients achieve personalized and precision medical care. AREAS COVERED This paper uses several keywords on the PubMed database to search the references, and reviews the workflow of traditional radiomics, as well as the characteristics and influencing factors of different imaging modes. At the same time, the references on the application of imaging in different benign and malignant liver diseases were also summarized. EXPERT OPINION For patients with liver disease, the traditional imaging evaluation can only provide limited information. Radiomics exploits the characteristics of high-throughput and high-dimensional extraction, enabling liver imaging capabilities far beyond the scope of traditional visual image analysis. Recent studies have demonstrated the prospect of this technology in personalized diagnosis and treatment decision in various fields of the liver. However, further clinical validation is needed in its application and practice.
Collapse
Affiliation(s)
- Jiaying Bao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xiao Feng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Yan Ma
- Department of Ultrasound, Zibo Central Hospital, Zibo, P.R. China
| | - Yanyan Wang
- Departments of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xu Tan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yongmei Tian
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| |
Collapse
|