1
|
Chen J, Wang S, Ding Y, Xu D, Zheng S. Radiotherapy-induced alterations in tumor microenvironment: metabolism and immunity. Front Cell Dev Biol 2025; 13:1568634. [PMID: 40356601 PMCID: PMC12066526 DOI: 10.3389/fcell.2025.1568634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Tumor metabolism plays a pivotal role in shaping immune responses within the tumor microenvironment influencing tumor progression, immune evasion, and the efficacy of cancer therapies. Radiotherapy has been shown to impact both tumor metabolism and immune modulation, often inducing immune activation through damage-associated molecular patterns and the STING pathway. In this study, we analyse the particular characteristics of the tumour metabolic microenvironment and its effect on the immune microenvironment. We also review the changes in the metabolic and immune microenvironment that are induced by radiotherapy, with a focus on metabolic sensitisation to the effects of radiotherapy. Our aim is to contribute to the development of research ideas in the field of radiotherapy metabolic-immunological studies.
Collapse
Affiliation(s)
- Jinpeng Chen
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Sheng Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Yue Ding
- Department of General Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
- Southeast University Medical School, Nanjing, Jiangsu, China
| | - Duo Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiya Zheng
- Southeast University Medical School, Nanjing, Jiangsu, China
- Department of Oncology, Southeast University, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Pinto N, Albert CM, Taylor MR, Ullom HB, Wilson AL, Huang W, Wendler J, Pattabhi S, Seidel K, Brown C, Gustafson JA, Rawlings-Rhea SD, Cheeney SHE, Burleigh K, Gustafson HH, Orentas RJ, Vitanza NA, Gardner RA, Jensen MC, Park JR. STRIvE-02: A First-in-Human Phase I Study of Systemically Administered B7-H3 Chimeric Antigen Receptor T Cells for Patients With Relapsed/Refractory Solid Tumors. J Clin Oncol 2024; 42:4163-4172. [PMID: 39255444 DOI: 10.1200/jco.23.02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024] Open
Abstract
PURPOSE B7-H3 is an immunoregulatory protein overexpressed by many pediatric solid tumors with limited expression on critical organs, making it an attractive immunotherapy target. We present a first-in-human phase I clinical trial systemically administered B7-H3 chimeric antigen receptor (CAR) T cells for young patients with relapsed or refractory solid tumors. PATIENTS AND METHODS Patients were enrolled onto a phase I trial to examine the safety of B7-H3-specific CARs at various dose levels (DLs) using a standard 3 + 3 dose escalation design. RESULTS Sixteen patients (range, 11-24 years; median, 18.5 years) were enrolled, and nine were treated at DL1 (0.5 × 106 CAR T cells/kg; n = 3) or DL2 (1 × 106 CAR T cells/kg; n = 6). There were no first infusion dose-limiting toxicities. Maximum first-infusion circulating CAR T cells detected in the peripheral blood were 4.98 cells/μL (range, 0-4.98 cells/μL) with detection of CAR T cells colocalizing with tumor cells at the site of metastatic disease in one patient. Patients were eligible for subsequent infusions. An objective partial response by PERCIST criteria was observed 28 days after a second CAR T cell infusion in a patient who did not have an objective response after the first infusion. The second infusion demonstrated marked enhancement of CAR T cell expansion to 1,590 cells/μL and was accompanied by cytokine release syndrome and dose-limiting transaminitis. Detailed peripheral blood cytokine profiling revealed elevated IL-21 levels preinfusion 2 compared with infusion 1. CONCLUSION B7-H3 CAR T cells are tolerable and demonstrate limited antitumor activity without acute on-target, off-tumor toxicity. High levels of CAR T cell expansion may be necessary to achieve objective responses, but undefined host and tumor microenvironment factors appear to be critical (ClinicalTrials.gov identifier: NCT04483778).
Collapse
Affiliation(s)
- Navin Pinto
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Catherine M Albert
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Mallory R Taylor
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Heidi B Ullom
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | | | | - Safia H E Cheeney
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Katelyn Burleigh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Heather H Gustafson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Rimas J Orentas
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Nicholas A Vitanza
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Rebecca A Gardner
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | - Julie R Park
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| |
Collapse
|
3
|
Bilski M, Konat-Bąska K, Zerella MA, Corradini S, Hetnał M, Leonardi MC, Gruba M, Grzywacz A, Hatala P, Jereczek-Fossa BA, Fijuth J, Kuncman Ł. Advances in breast cancer treatment: a systematic review of preoperative stereotactic body radiotherapy (SBRT) for breast cancer. Radiat Oncol 2024; 19:103. [PMID: 39095859 PMCID: PMC11295558 DOI: 10.1186/s13014-024-02497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Breast conserving treatment typically involves surgical excision of tumor and adjuvant radiotherapy targeting the breast area or tumor bed. Accurately defining the tumor bed is challenging and lead to irradiation of greater volume of healthy tissues. Preoperative stereotactic body radiotherapy (SBRT) which target tumor may solves that issues. We conducted a systematic literature review to evaluates the early toxicity and cosmetic outcomes of this promising treatment approach. Secondary we reviewed pathological complete response (pCR) rates, late toxicity, patient selection criteria and radiotherapy protocols. We retrieved literature from PubMed, Scopus, Web of Science, Cochrane, ScienceDirect, and ClinicalTrials.gov. The study adhered to the PRISMA 2020 guidelines. Ten prospective clinical trials (7 phase II, 3 phase I), encompassing 188 patients (aged 18-75 years, cT1-T3 cN0-N3 cM0, primarily with ER/PgR-positive, HER2-negative status,), were analyzed. Median follow-up was 15 months (range 3-30). Treatment involved single-fraction SBRT (15-21Gy) in five studies and fractionated (19.5-31.5Gy in 3 fractions) in the rest. Time interval from SBRT to surgery was 9.5 weeks (range 1-28). Acute and late G2 toxicity occurred in 0-17% and 0-19% of patients, respectively, G3 toxicity was rarely observed. The cosmetic outcome was excellent in 85-100%, fair in 0-10% and poor in only 1 patient. pCR varied, showing higher rates (up to 42%) with longer intervals between SBRT and surgery and when combined with neoadjuvant systemic therapy (up to 90%). Preoperative SBRT significantly reduce overall treatment time, enabling to minimalize volumes. Early results indicate excellent cosmetic effects and low toxicity.
Collapse
Affiliation(s)
- Mateusz Bilski
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
- Department of Brachytherapy, Lublin Cancer Center, Lublin, Poland
- Department of Radiotherapy, Lublin Cancer Center, Lublin, Poland
| | - Katarzyna Konat-Bąska
- Department of Brachytherapy, Lower Silesian Oncology Pulmonology and Hematology Center, Wrocław, Poland
| | - Maria Alessia Zerella
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Marcin Hetnał
- Department of Oncology, Faculty of Medicine, Andrzej Frycz Modrzewski Krakow University, Kraków, Poland
- Amethyst Radiotherapy Centre, Ludwik Rydygier Memorial Hospital, Kraków, Poland
| | | | - Martyna Gruba
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
| | | | - Patrycja Hatala
- Department of Radiotherapy, Medical University of Lublin, Lublin, Poland
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Jacek Fijuth
- Department of Radiotherapy, Medical University of Lodz, Lodz, Poland
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Lodz, Poland
| | - Łukasz Kuncman
- Department of Radiotherapy, Medical University of Lodz, Lodz, Poland.
- Department of External Beam Radiotherapy, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Lodz, Poland.
| |
Collapse
|
4
|
Murcia-Mejía M, Canela-Capdevila M, García-Pablo R, Jiménez-Franco A, Jiménez-Aguilar JM, Badía J, Benavides-Villarreal R, Acosta JC, Arguís M, Onoiu AI, Castañé H, Camps J, Arenas M, Joven J. Combining Metabolomics and Machine Learning to Identify Diagnostic and Prognostic Biomarkers in Patients with Non-Small Cell Lung Cancer Pre- and Post-Radiation Therapy. Biomolecules 2024; 14:898. [PMID: 39199286 PMCID: PMC11353221 DOI: 10.3390/biom14080898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally, with non-small cell lung cancer (NSCLC) accounting for over 85% of cases and poor prognosis in advanced stages. This study explored shifts in circulating metabolite levels in NSCLC patients versus healthy controls and examined the effects of conventionally fractionated radiation therapy (CFRT) and stereotactic body radiation therapy (SBRT). We enrolled 91 NSCLC patients (38 CFRT and 53 SBRT) and 40 healthy controls. Plasma metabolite levels were assessed using semi-targeted metabolomics, revealing 32 elevated and 18 reduced metabolites in patients. Key discriminatory metabolites included ethylmalonic acid, maltose, 3-phosphoglyceric acid, taurine, glutamic acid, glycocolic acid, and d-arabinose, with a combined Receiver Operating Characteristics curve indicating perfect discrimination between patients and controls. CFRT and SBRT affected different metabolites, but both changes suggested a partial normalization of energy and amino acid metabolism pathways. In conclusion, metabolomics identified distinct metabolic signatures in NSCLC patients with potential as diagnostic biomarkers. The differing metabolic responses to CFRT and SBRT reflect their unique therapeutic impacts, underscoring the utility of this technique in enhancing NSCLC diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.M.-M.); (M.C.-C.); (R.G.-P.); (R.B.-V.); (J.C.A.); (M.A.)
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Marta Canela-Capdevila
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.M.-M.); (M.C.-C.); (R.G.-P.); (R.B.-V.); (J.C.A.); (M.A.)
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Raquel García-Pablo
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.M.-M.); (M.C.-C.); (R.G.-P.); (R.B.-V.); (J.C.A.); (M.A.)
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Joan Badía
- Statistical Support Platform, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain;
| | - Rocío Benavides-Villarreal
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.M.-M.); (M.C.-C.); (R.G.-P.); (R.B.-V.); (J.C.A.); (M.A.)
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Johana C. Acosta
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.M.-M.); (M.C.-C.); (R.G.-P.); (R.B.-V.); (J.C.A.); (M.A.)
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Mónica Arguís
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.M.-M.); (M.C.-C.); (R.G.-P.); (R.B.-V.); (J.C.A.); (M.A.)
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (M.M.-M.); (M.C.-C.); (R.G.-P.); (R.B.-V.); (J.C.A.); (M.A.)
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Reus, Spain; (A.J.-F.); (J.M.J.-A.); (A.-I.O.); (H.C.); (J.J.)
| |
Collapse
|
5
|
Castelluccia A, Sardaro A, Niccoli Asabella A, Pisani AR, Rubini D, Portaluri M, Tramacere F. Durable complete response to PET-CT driven stereotactic radiation therapy plus pembrolizumab for pleomorphic Pancoast cancer: Case report and literature review. Clin Case Rep 2024; 12:e8633. [PMID: 38585585 PMCID: PMC10996042 DOI: 10.1002/ccr3.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
PET-driven SBRT plus pembrolizumab as first-line therapy against pleomorphic Pancoast cancer appears beneficial, probably due to high equivalent doses of SBRT on photopenic necrotic core and synergic immune system stimulation of immunoradiotherapy.
Collapse
Affiliation(s)
| | - Angela Sardaro
- Section of Radiology and Radiation Oncology, Interdisciplinary Department of MedicineUniversity of Bari “Aldo Moro”BariItaly
| | - Artor Niccoli Asabella
- Section of Nuclear Medicine, Interdisciplinary Department of MedicineUniversity of Bari Aldo MoroBariItaly
| | - Antonio Rosario Pisani
- Section of Nuclear Medicine, Interdisciplinary Department of MedicineUniversity of Bari Aldo MoroBariItaly
| | - Dino Rubini
- Department of Precision MedicineUniversità degli Studi della Campania Luigi VanvitelliNapoliCampaniaItaly
| | | | | |
Collapse
|
6
|
Swamy K. Therapeutic In Situ Cancer Vaccine Using Pulsed Stereotactic Body Radiotherapy-A Translational Model. Vaccines (Basel) 2023; 12:7. [PMID: 38276666 PMCID: PMC10819354 DOI: 10.3390/vaccines12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Both radiation and cancer therapeutic vaccine research are more than 100 years old, and their potential is likely underexplored. Antiangiogenics, nanoparticle targeting, and immune modulators are some other established anticancer therapies. In the meantime, immunotherapy usage is gaining momentum in clinical applications. This article proposes the concept of a pulsed/intermittent/cyclical endothelial-sparing single-dose in situ vaccination (ISVRT) schedule distinguishable from the standard therapeutic stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) plans. This ISVRT schedule can repeatedly generate tumor-specific neoantigens and epitopes for primary and immune modulation effects, augment supplementary immune enhancement techniques, activate long-term memory cells, avoid extracellular matrix fibrosis, and essentially synchronize with the vascular normalized immunity cycle. The core mechanisms of ISVRT impacting in situ vaccination would be optimizing cascading antigenicity and adjuvanticity. The present proposed hypothesis can be validated using the algorithm presented. The indications for the proposed concept are locally progressing/metastatic cancers that have failed standard therapies. Immunotherapy/targeted therapy, chemotherapy, antiangiogenics, and vascular-lymphatic normalization are integral to such an approach.
Collapse
|
7
|
Volpe S, Zaffaroni M, Piperno G, Vincini MG, Zerella MA, Mastroleo F, Cattani F, Fodor CI, Bellerba F, Bonaldi T, Bonizzi G, Ceci F, Cremonesi M, Fusco N, Gandini S, Garibaldi C, Torre DL, Noberini R, Petralia G, Spaggiari L, Venetis K, Orecchia R, Casiraghi M, Jereczek-Fossa BA. Multi-omics integrative modelling for stereotactic body radiotherapy in early-stage non-small cell lung cancer: clinical trial protocol of the MONDRIAN study. BMC Cancer 2023; 23:1236. [PMID: 38102575 PMCID: PMC10722797 DOI: 10.1186/s12885-023-11701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Currently, main treatment strategies for early-stage non-small cell lung cancer (ES-NSCLC) disease are surgery or stereotactic body radiation therapy (SBRT), with successful local control rates for both approaches. However, regional and distant failure remain critical in SBRT, and it is paramount to identify predictive factors of response to identify high-risk patients who may benefit from more aggressive approaches. The main endpoint of the MONDRIAN trial is to identify multi-omic biomarkers of SBRT response integrating information from the individual fields of radiomics, genomics and proteomics. METHODS MONDRIAN is a prospective observational explorative cohort clinical study, with a data-driven, bottom-up approach. It is expected to enroll 100 ES-NSCLC SBRT candidates treated at an Italian tertiary cancer center with well-recognized expertise in SBRT and thoracic surgery. To identify predictors specific to SBRT, MONDRIAN will include data from 200 patients treated with surgery, in a 1:2 ratio, with comparable clinical characteristics. The project will have an overall expected duration of 60 months, and will be structured into five main tasks: (i) Clinical Study; (ii) Imaging/ Radiomic Study, (iii) Gene Expression Study, (iv) Proteomic Study, (v) Integrative Model Building. DISCUSSION Thanks to its multi-disciplinary nature, MONDRIAN is expected to provide the opportunity to characterize ES-NSCLC from a multi-omic perspective, with a Radiation Oncology-oriented focus. Other than contributing to a mechanistic understanding of the disease, the study will assist the identification of high-risk patients in a largely unexplored clinical setting. Ultimately, this would orient further clinical research efforts on the combination of SBRT and systemic treatments, such as immunotherapy, with the perspective of improving oncological outcomes in this subset of patients. TRIAL REGISTRATION The study was prospectively registered at clinicaltrials.gov (NCT05974475).
Collapse
Affiliation(s)
- Stefania Volpe
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy.
| | - Gaia Piperno
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Maria Alessia Zerella
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, 28100, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology (IEO) IRCCS, Milan, 20141, Italy
| | - Cristiana Iuliana Fodor
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Federica Bellerba
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Tiziana Bonaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Giuseppina Bonizzi
- Biobank for Translational and Digital Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Ceci
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Cristina Garibaldi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Davide La Torre
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- SKEMA Business School, Université Côte d'Azur, Sophia Antipolis, France
| | - Roberta Noberini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Division of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Konstantinos Venetis
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Monica Casiraghi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
- Division of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, 20141, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| |
Collapse
|
8
|
Machiels M, Oulkadi R, Tramm T, Stecklein SR, Somaiah N, De Caluwé A, Klein J, Tran WT, Salgado R. Individualising radiation therapy decisions in breast cancer patients based on tumour infiltrating lymphocytes and genomic biomarkers. Breast 2023; 71:13-21. [PMID: 37437386 PMCID: PMC10512095 DOI: 10.1016/j.breast.2023.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Radiation therapy (RT) has long been fundamental for the curative treatment of breast cancer. While substantial progress has been made in the anatomical and technological precision of RT delivery, and some approaches to de-escalate or omit RT based on clinicopathologic features have been successful, there remain substantial opportunities to refine individualised RT based on tumour biology. A major area of clinical and research interest is to ascertain the individualised risk of loco-regional recurrence to direct treatment decisions regarding escalation and de-escalation of RT. Patient-tailored treatment with RT is considerably lagging behind compared with the massive progress made in the field of personalised medicine that currently mainly applies to decisions on the use of systemic therapy or targeted agents. Herein we review select literature surrounding the use of tumour genomic biomarkers and biomarkers of the immune system, including tumour infiltrating lymphocytes (TILs), within the management of breast cancer, specifically as they relate to progress in moving toward analytically validated and clinically tested biomarkers utilized in RT.
Collapse
Affiliation(s)
- Melanie Machiels
- Department of Radiation Oncology, Iridium Netwerk, University of Antwerp, Health & Sciences, Antwerp, Belgium.
| | - Redouane Oulkadi
- Department of Radiation Oncology, Iridium Netwerk, University of Antwerp, Health & Sciences, Antwerp, Belgium
| | - Trine Tramm
- Department of Pathology, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Shane R Stecklein
- Departments of Radiation Oncology, Pathology & Laboratory Medicine, And Cancer Biology, The University of Kansas Medical Center, KS, USA
| | - Navita Somaiah
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Breast Unit, The Royal Marsden NHS Foundation Trust, UK
| | - Alex De Caluwé
- Université Libre de Bruxelles (ULB), Hôpitaux Universitaires de Bruxelles (H.U.B), Institut Jules Bordet, Brussels, Belgium
| | - Jonathan Klein
- State University of New York (SUNY) Downstate Health Sciences University and Maimonides Medical Center, NY, United States
| | - William T Tran
- Department of Radiation Oncology, University of Toronto & Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Pathology, GZA - ZNA Hospitals, Antwerp, Belgium
| |
Collapse
|
9
|
Aristei C, Kaidar-Person O, Boersma L, Leonardi MC, Offersen B, Franco P, Arenas M, Bourgier C, Pfeffer R, Kouloulias V, Bölükbaşı Y, Meattini I, Coles C, Luis AM, Masiello V, Palumbo I, Morganti AG, Perrucci E, Tombolini V, Krengli M, Marazzi F, Trigo L, Borghesi S, Ciabattoni A, Ratoša I, Valentini V, Poortmans P. The 2022 Assisi Think Tank Meeting: White paper on optimising radiation therapy for breast cancer. Crit Rev Oncol Hematol 2023; 187:104035. [PMID: 37244324 DOI: 10.1016/j.critrevonc.2023.104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
The present white paper, referring to the 4th Assisi Think Tank Meeting on breast cancer, reviews state-of-the-art data, on-going studies and research proposals. <70% agreement in an online questionnaire identified the following clinical challenges: 1: Nodal RT in patients who have a) 1-2 positive sentinel nodes without ALND (axillary lymph node dissection); b) cN1 disease transformed into ypN0 by primary systemic therapy and c) 1-3 positive nodes after mastectomy and ALND. 2. The optimal combination of RT and immunotherapy (IT), patient selection, IT-RT timing, and RT optimal dose, fractionation and target volume. Most experts agreed that RT- IT combination does not enhance toxicity. 3: Re-irradiation for local relapse converged on the use of partial breast irradiation after second breast conserving surgery. Hyperthermia aroused support but is not widely available. Further studies are required to finetune best practice, especially given the increasing use of re-irradiation.
Collapse
Affiliation(s)
- C Aristei
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy.
| | - O Kaidar-Person
- Breast Radiation Unit, Radiation Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - L Boersma
- Radiation Oncology (Maastro), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M C Leonardi
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - B Offersen
- Department of Experimental Clinical Oncology, Department of Oncology, Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - P Franco
- Depatment of Translational Medicine, University of Eastern Piedmont and Department of Radiation Oncology, 'Maggiore della Carita`' University Hospital, Novara, Italy
| | - M Arenas
- Universitat Rovira I Virgili, Radiation Oncology Department, Hospital Universitari Sant Hoan de Reus, IISPV, Spain
| | - C Bourgier
- Radiation Oncology, ICM-Val d' Aurelle, Univ Montpellier, Montpellier, France
| | - R Pfeffer
- Oncology Institute, Assuta Medical Center, Tel Aviv and Ben Gurion University Medical School, Israel
| | - V Kouloulias
- 2nd Department of Radiology, Radiotherapy Unit, Medical School, National and Kapodistrian University of Athens, Greece
| | - Y Bölükbaşı
- Koc University, Faculty of Medicine, Department of Radiation Oncology, Istanbul, Turkey
| | - I Meattini
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence & Radiation Oncology Unit - Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - C Coles
- Department of Oncology, University of Cambridge, UK
| | - A Montero Luis
- Department of Radiation Oncology, University Hospital HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - V Masiello
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - I Palumbo
- Radiation Oncology Section, Department of Medicine and Surgery, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - A G Morganti
- DIMES, Alma Mater Studiorum Bologna University, Bologna, Italy; Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum Bologna University, Bologna, Italy
| | - E Perrucci
- Radiation Oncology Section, Perugia General Hospital, Perugia, Italy
| | - V Tombolini
- Radiation Oncology, Department of Radiological, Oncological and Pathological Science, University "La Sapienza", Roma, Italy
| | - M Krengli
- DISCOG, Università di Padova e Istituto Oncologico Veneto - IRCCS, Italy
| | - F Marazzi
- Unità Operativa di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - L Trigo
- Service of Brachytherapy, Department of Image and Radioncology, Instituto Português Oncologia Porto Francisco Gentil E.P.E., Portugal
| | - S Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - A Ciabattoni
- Department of Radiation Oncology, San Filippo Neri Hospital, ASL Rome 1, Rome, Italy
| | - I Ratoša
- Division of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - V Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore e Fondazione Policlinico Gemelli IRCSS Roma, Italy
| | - P Poortmans
- University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Department of Radiation Oncology, Iridium Kankernetwerk, Antwerp, Belgium, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
10
|
Immunotherapy and Radiotherapy as an Antitumoral Long-Range Weapon-A Partnership with Unsolved Challenges: Dose, Fractionation, Volumes, Therapeutic Sequence. Curr Oncol 2022; 29:7388-7395. [PMID: 36290857 PMCID: PMC9601214 DOI: 10.3390/curroncol29100580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy, the modern oncological treatment with immune checkpoint inhibitors (ICIs), has been part of the clinical practice for malignant melanoma for more than a decade. Anti-cytotoxic T-lymphocyte antigen 4 (CTLA4), anti-programmed cell death Protein 1 (PD-1), or anti programmed death-ligand 1 (PD-L1) agents are currently part of the therapeutic arsenal of metastatic or relapsed disease in numerous cancers; more recently, they have also been evaluated and validated as consolidation therapy in the advanced local stage. The combination with radiotherapy, a treatment historically considered loco-regional, changes the paradigm, offering-via synergistic effects-the potential to increase immune-mediated tumor destruction. However, the fragile balance between the tumoricidal effects through immune mechanisms and the immunosuppression induced by radiotherapy means that, in the absence of ICI, the immune-mediated potentiation effect of radiotherapy at a distance from the site of administration is rare. Through analysis of the preclinical and clinical data, especially the evidence from the PACIFIC clinical trial, we can consider that hypofractionated irradiation and reduction of the irradiated volume, in order to protect the immune-infiltrated tumor microenvironment, performed concurrently with the immunotherapy or a maximum of 2 weeks before the start of ICI treatment, could bring maximum benefits. In addition, avoiding radiation-induced lymphopenia (RILD) by protecting some anatomical lymphoid structures or large blood vessels, as well as the use of irradiation of partial tumor volumes, even in plurimetastatic disease, for the conversion of a "cold" immunological tumor into a "hot" immunological tumor are modern concepts of radiotherapy in the era of immunotherapy. Low-dose radiotherapy could also be proposed in plurimetastatic cases, the effect being different (modeling of the TME) from that of high doses per fraction irradiation (cell death with release of antigens that facilitates immune-mediated cell death).
Collapse
|
11
|
Miljanic M, Montalvo S, Aliru M, Song T, Leon-Camarena M, Innella K, Vujovic D, Komaki R, Iyengar P. The Evolving Interplay of SBRT and the Immune System, along with Future Directions in the Field. Cancers (Basel) 2022; 14:cancers14184530. [PMID: 36139689 PMCID: PMC9497192 DOI: 10.3390/cancers14184530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary We provide this commentary of stereotactic body radiotherapy (SBRT), and describe our evolving understanding of this treatment approach, its effects on the immune system, and the ability to stimulate immune cells to further recognize and attack cancer. The aim of this work is to describe our current knowledge of how SBRT effects the environment within the tumor and the immune cells present, whether timing the combination of this treatment with that of immunotherapy may have an impact on the body’s own immune response, and what the latest approaches in the field are in regards to this radiation treatment modality. Among these latest and exciting developments is Personalized Ultrafractionated Stereotactic Adaptive Radiation Therapy, known as PULSAR. This latest approach is described in detail herein, and may represent a leading novel method for adapting radiation treatments to treatment-induced tumor changes over time and stimulating the body’s immune response against tumor cells. Abstract In this commentary, we describe the potential of highly ablative doses utilizing Stereotactic Body Radiation Therapy (SBRT) in single or few fractions to enhance immune-responsiveness, how timing of this approach in combination with immune-checkpoint inhibitors may augment treatment-effect, and whether Personalized Ultrafractionated Stereotactic Adaptive Radiation Therapy (PULSAR) is an avenue for future advancement in the continued endeavor to foster a systemic effect of therapy beyond the radiation treatment field. The ablative potential of SBRT may support an increase in tumor-antigen presentation, enhancement of immune-stimulatory components, and an improvement in tumor-microenvironment immune cell infiltration. Furthermore, the latest advancement of ablative radiation delivery is PULSAR-based therapy, whereby ablative doses are delivered in pulses of treatment that may be several weeks apart, combined with adaptive treatment to tumor changes across time. The benefits of this novel approach include the ability to optimize direct tumor control by assessment of tumor size and location via dedicated imaging acquired prior to each delivered pulse, and further potentiation of immune recognition through combination with concurrent immune-checkpoint blockade.
Collapse
Affiliation(s)
- Mihailo Miljanic
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| | - Steven Montalvo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maureen Aliru
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tidie Song
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Leon-Camarena
- Department of Internal Medicine, University of Texas at Austin, Austin, TX 78705, USA
| | - Kevin Innella
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Dragan Vujovic
- Icahn School of Medicine at Mount Sinai, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Ritsuko Komaki
- Emeritus Professor of Radiation Oncology, UT MDACC, Adjunct Professor of Radiation Oncology Baylor College of Medicine, Houston, TX 77030, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|