1
|
Li H, Wu M, Ma Z, Wang X, Fan J, Hu K, Wei Y, Yao C, Liu J, Kang S, Kang X, Yuan J. Porcine plasma protein cold-set hydrogel crosslinked by genipin and the immunomodulatory, proliferation promoting and scar-remodeling in wound healing. BIOMATERIALS ADVANCES 2025; 170:214216. [PMID: 39923602 DOI: 10.1016/j.bioadv.2025.214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Addressing the critical need for biocompatible and multifunctional wound dressings for chronic and non-healing wounds, cold-set hydrogel using natural biomacromolecules are potential candidates. This study developed a novel cold-set hydrogel of porcine plasma protein (PPP) through genipin (GP) as crosslinker and glucono delta-lactone (GDL) as acidifier. GP promoted hardness, springiness, water holding capacity (WHC) and modulus in a dose-dependent manner in the presence of GDL, and significantly enhanced microstructural density, integrity and anti-degradation, critical as wound dressing, achieving the optimal performance at 0.15 % GP and 0.2 % GDL. Subsequently, biocompatibility assessments revealed that the optimum PPP gel was low cytotoxicity and could support cell migration and proliferation, reduce apoptosis with dose-effect relationship of the filler PPP. Meanwhile, in vivo skin wound healing model indicated the efficacy in accelerating wound healing, reducing inflammation, and promoting tissue remodeling without excessive scar formation. These effects are attributed to the ability of PPP in the hydrogel to modulate local inflammatory responses, enhance angiogenesis, and balance extracellular matrix remodeling processes. In conclusion, this pioneering work establishes PPP cold-set hydrogels as promising candidates for advanced wound care solutions, combining the benefits of natural protein-based biomaterials with innovative crosslinking strategies to meet urgent clinical needs in regenerative medicine.
Collapse
Affiliation(s)
- Hanluo Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Meiling Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zhuanzhuan Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Shihezi University, Xinjiang 832008, China
| | - Junwei Fan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kanghong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yanhong Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Chenguang Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Jinbiao Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xu Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Jianglan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
JIANG DONG, QI ZHI, XU ZHIYING, LI YIRAN. CYB5D2 inhibits the malignant progression of hepatocellular carcinoma by inhibiting TGF-β expression and epithelial-mesenchymal transition. Oncol Res 2025; 33:709-722. [PMID: 40109873 PMCID: PMC11915040 DOI: 10.32604/or.2024.050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/19/2024] [Indexed: 03/22/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a prevalent liver malignancy. This study examined the roles of transforming growth factor beta (TGF-β) and cytochrome b5 domain containing 2 (CYB5D2) in HCC etiology and their prognostic biomarker potential. Methods Key modules and prognostic genes were identified by analyzing the GSE101685 dataset by weighted gene co-expression network analysis (WGCNA) and Least absolute shrinkage and selection operator (LASSO) Cox regression. The expression levels of CYB5D2 and TGF-β in HCC cell lines were quantified using Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB) assays. Effects of CYB5D2 overexpression on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) marker regulation were assessed in vitro, while in vivo tumorigenicity was evaluated using a xenograft model of HCC in nude mice. Results In this study, WGCNA identified the turquoise module as significantly associated with HCC, containing 452 DEGs. LASSO Cox regression analysis revealed 9 key prognostic genes, with CYB5D2 being underexpressed in HCC cells and tissues. TGF-β was negatively correlated with CYB5D2 expression, resulting in poor patient prognosis. Functional assays demonstrated that CYB5D2 overexpression inhibited proliferation, migration, and invasion of HCC cell lines, and altered EMT marker expression. Furthermore, the addition of TGF-β partially reversed the suppressive effects caused by CYB5D2 overexpression. In vivo, CYB5D2 overexpression significantly reduced tumor growth, indicating its potential as a therapeutic target for HCC. Conclusion The tumor suppressor function of CYB5D2 in HCC and its interaction with TGF-β offered fresh information on the molecular pathophysiology of HCC and possible treatment avenues.
Collapse
Affiliation(s)
- DONG JIANG
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - ZHI QI
- Department of Neurology, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - ZHIYING XU
- Department of Hepatic Surgery IV, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - YIRAN LI
- Department of Ultrasound, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
3
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
4
|
Jiang H, Zhou S, Li G. Novel biomarkers used for early diagnosis and tyrosine kinase inhibitors as targeted therapies in colorectal cancer. Front Pharmacol 2023; 14:1189799. [PMID: 37719843 PMCID: PMC10502318 DOI: 10.3389/fphar.2023.1189799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most lethal type of cancer worldwide, presenting major health risks as well as economic costs to both people and society. CRC survival chances are significantly higher if the cancer is diagnosed and treated early. With the development of molecular biology, numerous initiatives have been undertaken to identify novel biomarkers for the early diagnosis of CRC. Pathological disorders can be diagnosed at a lower cost with the help of biomarkers, which can be detected in stool, blood, and tissue samples. Several lines of evidence suggest that the gut microbiota could be used as a biomarker for CRC screening and treatment. CRC treatment choices include surgical resection, chemotherapy, immunotherapy, gene therapy, and combination therapies. Targeted therapies are a relatively new and promising modality of treatment that has been shown to increase patients' overall survival (OS) rates and can inhibit cancer cell development. Several small-molecule tyrosine kinase inhibitors (TKIs) are being investigated as potential treatments due to our increasing awareness of CRC's molecular causes and oncogenic signaling. These compounds may inhibit critical enzymes in controlling signaling pathways, which are crucial for CRC cells' development, differentiation, proliferation, and survival. On the other hand, only one of the approximately 42 TKIs that demonstrated anti-tumor effects in pre-clinical studies has been licensed for clinical usage in CRC. A significant knowledge gap exists when bringing these tailored medicines into the clinic. As a result, the emphasis of this review is placed on recently discovered biomarkers for early diagnosis as well as tyrosine kinase inhibitors as possible therapy options for CRC.
Collapse
|
5
|
Zhu Y, Wang Y, Hu M, Lu X, Sun G. Identification of oncogenes and tumor-suppressor genes with hepatocellular carcinoma: A comprehensive analysis based on TCGA and GEO datasets. Front Genet 2023; 13:934883. [PMID: 36685860 PMCID: PMC9845404 DOI: 10.3389/fgene.2022.934883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Aim: Existing targeted therapies for hepatocellular carcinoma (HCC) are resistant and have limitations. It is crucial to find new HCC-related target genes. Methods: RNA-sequencing data of HCC were gathered from The Cancer Genome Atlas and Gene Expression Omnibus datasets. Initially, differentially expressed genes between normal and tumor tissues were identified from four Gene Expression Omnibus datasets, GSE36376, GSE102079, GSE54236, and GSE45267. GO terms and KEGG pathway enrichment analyses were performed to explore the potential biological functions of differentially expressed genes. A PPI network was constructed by using the STRING database, and up-regulated and down-regulated hub genes were defined through 12 topological approaches. Subsequently, the correlation bounded by up-regulated genes and down-regulated genes in the diagnosis, prognosis, and clinicopathological features of HCC was analyzed. Beyond a shadow of doubt, the key oncogene PBK and tumor suppressor gene F9 were screened out, and the specific mechanism was investigated through GSEA enrichment analysis and immune correlation analysis. The role of PBK in HCC was further verified by western blot, CCK8, transwell, and tube formation experiments. Results: CDCA5, CDC20, PBK, PRC1, TOP2A, and NCAPG are good indicators of HCC diagnosis and prognosis. The low expressions of F9, AFM, and C8B indicate malignant progression and poor prognosis of HCC. PBK was found to be closely related to VEGF, VEGFR, and PDGFR pathways. Experiments showed that PBK promotes HCC cell proliferation, migration, invasion, and tube formation in HUVEC cells. F9 was negatively correlated with the degree of immune infiltration, and low expression of F9 suggested a poor response to immunotherapy. Conclusion: The role of HCC-related oncogenes and tumor-suppressor genes in diagnosis and prognosis was identified. In addition, we have found that PBK may promote tumor proliferation through angiogenesis and F9 may be a predictor of tumor immunotherapy response.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanfei Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Mengyao Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoting Lu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|