1
|
Zheng Y, Jiang Z, Yuan L, Cheng X, He W, Chen X. Targeting fatty acid oxidation: A potential strategy for treating gastrointestinal tumors. Int J Cancer 2025; 157:7-17. [PMID: 40047558 DOI: 10.1002/ijc.35380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 05/11/2025]
Abstract
Gastrointestinal cancers including esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), and colorectal cancer (CRC) are common and highly lethal types of cancer worldwide. Metabolic reprogramming plays a critical role in cancer progression and involves metabolic processes such as glucose and lipid metabolism. Fatty acid oxidation (FAO) has a profound impact on cancer, with many genes and cytokines influencing cancer cell initiation, development, metastasis, and resistance by regulating FAO. Additionally, FAO further promotes cancer progression by affecting the tumor microenvironment (TME). The role of FAO in gastrointestinal cancers has garnered increasing attention, and related anticancer drugs are currently being developed.
Collapse
Affiliation(s)
- Yingsong Zheng
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Weiyang He
- Department of Gastric Surgery, Sichuan Clinical Research Centre for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Centre Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaodong Chen
- Department of Gastric Surgery, Sichuan Clinical Research Centre for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Centre Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Ping P, Ma Y, Xu X, Li J. Reprogramming of fatty acid metabolism in thyroid cancer: Potential targets and mechanisms. Chin J Cancer Res 2025; 37:227-249. [PMID: 40353071 PMCID: PMC12062987 DOI: 10.21147/j.issn.1000-9604.2025.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Thyroid cancer (TC) is one of the most common endocrine system tumors, and its incidence continues to increase worldwide. Although most TC patients have a good prognosis, especially with continuous advancements in surgery, radioactive iodine therapy, chemotherapy, endocrine therapy and targeted therapy, the effectiveness of disease treatment has significantly improved. However, there are still some cases with a higher risk of death and greater aggressiveness. In these more challenging advanced or highly aggressive cases, tyrosine kinase inhibitors appear to be an effective treatment option. Unfortunately, these drugs are less than ideal in terms of efficacy because of their toxicity and potential for intrinsic or acquired resistance. Therefore, exploring new strategies targeting the metabolic characteristics of TC cells and overcoming drug resistance barriers in existing treatments have become key topics in the current field of TC research. In recent years, lipid metabolic reprogramming has gained attention as an important aspect of cancer development. Lipid metabolic reprogramming not only participates in the formation of the cell membrane structure, but also plays an important role in signal transduction and promoting cell proliferation. In particular, fatty acid (FA) metabolic reprogramming has attracted widespread attention and plays an important role in multiple aspects such as tumor growth, metastasis, enhanced invasive ability, immune escape, and drug resistance. Although TC is considered a disease that is highly dependent on specific types of metabolic activities, a comprehensive understanding of the specific mechanism of action of FA metabolic reprogramming in this process is lacking. This article aims to review how FA metabolic reprogramming participates in the occurrence and development of TC, focusing on the impact of abnormal FA metabolic pathways and changes in the expression and regulation of related genes over the course of this disease. By examining the complex interactions between FA metabolic disorders and carcinogenic signaling pathways in depth, we aim to identify new therapeutic targets and develop more precise and effective treatments for TC.
Collapse
Affiliation(s)
- Pengbin Ping
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
- Department of Radiation Therapy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Yuhong Ma
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaoying Xu
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Juan Li
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
3
|
Thongheang K, Pamonsupornwichit T, Sornsuwan K, Juntit OA, Chokepaichitkool T, Thongkum W, Yasamut U, Tayapiwatana C. Potentiating Antibody-Dependent Cellular Cytotoxicity in Triple-Negative Breast Cancer via the Humanized Anti-CD147 Antibody. Antibodies (Basel) 2025; 14:36. [PMID: 40265417 PMCID: PMC12015854 DOI: 10.3390/antib14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype with high metastatic potential, poor prognosis, and the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). The lack of these receptors limits the standard treatments, such as hormone therapies and HER2-targeted antibodies like trastuzumab. These challenges highlight the critical need for novel therapeutic strategies. CD147, a transmembrane glycoprotein overexpressed in TNBC, promotes tumor progression, metastasis, and chemoresistance, making it a promising therapeutic target. This study evaluates the antibody-dependent cellular cytotoxicity (ADCC) of HuM6-1B9, a humanized anti-CD147 antibody, against MDA-MB-231 cells, a TNBC model. METHODS CFSE-labelled MDA-MB-231 cells were co-cultured with PBMCs as effector cells (E:T ratio 80:1) in the presence of HuM6-1B9 and incubated for 4 h. Cells were then collected and stained with PI, and CFSE+/PI+ dead target cells were analyzed by flow cytometry. RESULTS Co-culturing MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) in the presence of HuM6-1B9 demonstrated effective ADCC induction without direct cytotoxicity. HuM6-1B9 induced 54.01% cancer cell death via ADCC, significantly outperforming trastuzumab (26.14%) while sparing PBMCs. CONCLUSION These findings support HuM6-1B9 as a prospective TNBC therapeutic and warrant further investigation into its clinical potential.
Collapse
Affiliation(s)
- Kanyarat Thongheang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
| | - Thanathat Pamonsupornwichit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - On-anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tawan Chokepaichitkool
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Weeraya Thongkum
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Zhang Y, Zhang D, Xie Z, Xia T, Zou L, Wang T, Zhong L, Zeng Z, Wang L, Chen G, Liang X. Integrated transcriptomic and metabolomic analysis reveals the effects of EMMPRIN on nucleotide metabolism and 1C metabolism in AS mouse BMDMs. Front Mol Biosci 2025; 11:1460186. [PMID: 40125455 PMCID: PMC11927532 DOI: 10.3389/fmolb.2024.1460186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025] Open
Abstract
Background Extracellular matrix metalloproteinase inducer (EMMPRIN) has been considered as a key promoting factor in atherosclerosis (AS). Some studies have shown that regulating EMMPRIN expression in bone marrow-derived macrophages (BMDMs) of ApoE-/- mice can affect plaque stability, but the mechanism was not clear. Methods AS model mice were built from high-fat-feeding ApoE -/- mice, and were divided into siE group and CON group. The BMDMs and aortas from AS mice were harvested following in vivo treatment with either EMMPRIN short interfering (si)RNA (siEMMPRIN) or negative control siRNA. Transcriptomic and metabolomic profiles were analyzed using RNA-sequencing and Liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. The efficacy of siEMMPRIN was assessed through real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). Immunofluorescence staining was employed to measure EMMPRIN expression within aortic atherosclerotic plaques. Cell proliferation was monitored using the Cell Counting Kit-8 (CCK8), while flow cytometry was utilized to analyze the cell cycle. Additionally, seahorse analysis and oil red O staining were conducted to verify glucose and lipid metabolism, respectively. Results A total of 3,282 differentially expressed metabolites (DEMs) and 16,138 differentially expressed genes (DEGs) were identified between the CON group and siE group. The nucleotide metabolism and one-carbon (1C) metabolism were identified as major altered pathways at both the transcriptional and metabolic levels. Metabolomic results identified increased levels of glycine, serine, betaine and S-adenosyl-L-methionine (SAM) to S-adenosyl-L-homocysteine (SAH) ratio and decreased levels of dimethylglycine (DMG) and SAH in 1C metabolism, accompanied by the accumulation of nucleotides, nucleosides, and bases in nucleotide metabolism. Transcriptomics results shown that Dnmt, Mthfd2 and Dhfr were downregulated, while Mthfr were upregulated in 1C metabolism. And numerous genes involved in de novo nucleotide synthesis, pentose phosphate pathway (PPP) and dNTP production were significantly inhibited, which may be associated with decreased BMDMs proliferation and cell cycle arrest in the G0/G1 phase in siE group. Multi-omics results also showed changes in glucose and lipid metabolism. Seahorse assay confirmed reduced glycolysis and oxidative phosphorylation (OXPHOS) levels and the Oil Red O staining confirmed the decrease of lipid droplets in siE group. Conclusion The integrated metabolomic and transcriptomic analysis suggested that nucleotide metabolism and 1C metabolism may be major metabolic pathways affected by siEMMPRIN in AS mouse BMDMs. Our study contributes to a better understanding of the role of EMMPRIN in AS development.
Collapse
Affiliation(s)
- Yun Zhang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Diyuan Zhang
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Xia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Zou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuo Zeng
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Lingying Wang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Guozhu Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Liang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Sharma S, Kaur V, Duhan P, Singh R, Agnihotri N. Evaluation of Anticancer Activity of Novel and Tumor-Targeted Glutamine-Conjugated Organotin(IV) Compounds in Colorectal Cancer─An In Vitro and In Vivo Study. J Med Chem 2025; 68:2593-2607. [PMID: 39834112 DOI: 10.1021/acs.jmedchem.4c01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Over the years, numerous ligand-based organotin(IV) Schiff base compounds have shown remarkable cytotoxicity and anticancer activities, but their clinical use is restricted by systemic toxicity, prompting the search for targeted therapies. Targeted delivery can be enhanced by exploiting the inherent characteristics of cancer cells such as glutamine addiction, which is essential to support cellular biosynthesis and cell growth to sustain aberrant proliferation. Our previous study revealed glutamine-conjugated organotin(IV) compounds have strong DNA/protein affinities, favorable in silico ADME profiles, and significant antiproliferative activity. In this study, these compounds demonstrated significant cytotoxicity against human colon carcinoma and adenocarcinoma cell lines via the induction of cell cycle arrest and apoptosis. In DMH/DSS-induced experimental colon carcinogenesis, these compounds reduced tumor burden and volume and inhibited cell proliferation and induced apoptosis, with minimal toxicity. Tissue distribution studies revealed selective accumulation in the colon. These findings support their potential as chemotherapeutic candidates for colon cancer.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pratibha Duhan
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Kurasaka C, Nishizawa N, Ogino Y, Sato A. Anticancer sensitivity and biological aspect of 5-fluorouracil-resistant human colorectal cancer HCT116 cells in three-dimensional culture under high- and low-glucose conditions. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:870-880. [PMID: 38555594 DOI: 10.1080/15257770.2024.2332414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
5-Fluorouracil (5-FU) is a commonly used anticancer drug for colorectal cancer (CRC). Therefore, it is crucial to elucidate the mechanisms that contribute to 5-FU resistance. We established an acquired 5-FU resistant cell line, HCT116RF10, derived from CRC cells and investigated its energy metabolism as well as the underlying mechanism of 5-FU resistance. We examined the sensitivity to 5-FU and the formation of tumor spheres in parental HCT116 cells and 5-FU-resistant HCT116RF10 cells under 3D culture conditions at high-glucose (HG 25 mM) and low-glucose (LG 5.5 mM) concentrations. These results suggested that the tumor spheres of parental HCT116 cells displayed higher sensitivity to 5-FU under LG conditions than under HG conditions. HCT116RF10 tumor spheres exhibited comparable sensitivity to 5-FU under HG and LG conditions. Furthermore, under HG conditions, there was a marked decrease in extracellular lactate in the HCT116RF10 tumor sphere compared to that in the LG tumor sphere. Similarly, HCT116 tumor spheres showed decreased extracellular lactate levels under LG conditions compared to those grown under HG conditions. Moreover, the evidence reveals that the tumor spheres of HCT116RF10 and HCT116 cells exhibit disparate dependencies on energy metabolism, glycolysis, and mitochondrial respiration under both HG and LG conditions. These results have important clinical implications for overcoming 5-FU resistance and enhancing antitumor treatment strategies.
Collapse
Affiliation(s)
- Chinatsu Kurasaka
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Nana Nishizawa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Ogino
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
7
|
Kanekura T. CD147/Basigin Is Involved in the Development of Malignant Tumors and T-Cell-Mediated Immunological Disorders via Regulation of Glycolysis. Int J Mol Sci 2023; 24:17344. [PMID: 38139173 PMCID: PMC10743398 DOI: 10.3390/ijms242417344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is a multifunctional molecule with various binding partners. CD147 binds to monocarboxylate transporters (MCTs) and supports their expression on plasma membranes. MTC-1 and MCT-4 export the lactic acid that is converted from pyruvate in glycolysis to maintain the intracellular pH level and a stable metabolic state. Under physiological conditions, cellular energy production is induced by mitochondrial oxidative phosphorylation. Glycolysis usually occurs under anaerobic conditions, whereas cancer cells depend on glycolysis under aerobic conditions. T cells also require glycolysis for differentiation, proliferation, and activation. Human malignant melanoma cells expressed higher levels of MCT-1 and MCT-4, co-localized with CD147 on the plasma membrane, and showed an increased glycolysis rate compared to normal human melanocytes. CD147 silencing by siRNA abrogated MCT-1 and MCT-4 membrane expression and disrupted glycolysis, inhibiting cancer cell activity. Furthermore, CD147 is involved in psoriasis. MCT-1 was absent on CD4+ T cells in CD147-deficient mice. The naïve CD4+ T cells from CD147-deficient mice exhibited a low capacity to differentiate into Th17 cells. Imiquimod-induced skin inflammation was significantly milder in the CD147-deficient mice than in the wild-type mice. Overall, CD147/Basigin is involved in the development of malignant tumors and T-cell-mediated immunological disorders via glycolysis regulation.
Collapse
Affiliation(s)
- Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
8
|
Geng S, Zhan H, Cao L, Geng L, Ren X. Targeting PTGES/PGE2 axis enhances sensitivity of colorectal cancer cells to 5-fluorouracil. Biochem Cell Biol 2023; 101:501-512. [PMID: 37358009 DOI: 10.1139/bcb-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Insensitivity and resistance to 5-fluorouracil (5FU) remain as major hurdles for effective and durable 5FU-based chemotherapy in colorectal cancer (CRC) patients. In this study, we identified prostaglandin E synthase (PTGES)/prostaglandin E2 (PGE2) axis as an important regulator for 5FU sensitivity in CRC cells. We found that PTGES expression and PGE2 production are elevated in CRC cells in comparison to normal colorectal epithelial cells. Depletion of PTGES significantly enhanced the inhibitory effect of 5FU on CRC cell viability that was fully reverted by exogenous supplement of PGE2. Inhibition of PTGES enzymatic function, by either inducing loss-of-function mutant or treatment with selective inhibitors, phenocopied the PTGES depletion in terms of 5FU sensitization. Mechanistically, PTGES/PGE2 axis modulates glycolysis in CRC cells, thereby regulating the 5FU sensitivity. Importantly, high PTGES expression is correlated with poor prognosis in 5FU-treated CRC patients. Thus, our study defines PTGES/PGE2 axis as a novel therapeutic target for enhancing the efficacy of 5FU-based chemotherapy in CRC.
Collapse
Affiliation(s)
- Song Geng
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hao Zhan
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lianmeng Cao
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Longlong Geng
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiang Ren
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|