1
|
Liu SV, Nagasaka M, Atz J, Solca F, Müllauer L. Oncogenic gene fusions in cancer: from biology to therapy. Signal Transduct Target Ther 2025; 10:111. [PMID: 40223139 PMCID: PMC11994825 DOI: 10.1038/s41392-025-02161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Oncogenic gene fusions occur across a broad range of cancers and are a defining feature of some cancer types. Cancers driven by gene fusion products tend to respond well to targeted therapies, where available; thus, detection of potentially targetable oncogenic fusions is necessary to select optimal treatment. Detection methods include non-sequencing methods, such as fluorescence in situ hybridization and immunohistochemistry, and sequencing methods, such as DNA- and RNA-based next-generation sequencing (NGS). While NGS is an efficient way to analyze multiple genes of interest at once, economic and technical factors may preclude its use in routine care globally, despite several guideline recommendations. The aim of this review is to present a summary of oncogenic gene fusions, with a focus on fusions that affect tyrosine kinase signaling, and to highlight the importance of testing for oncogenic fusions. We present an overview of the identification of oncogenic gene fusions and therapies approved for the treatment of cancers harboring gene fusions, and summarize data regarding treating fusion-positive cancers with no current targeted therapies and clinical studies of fusion-positive cancers. Although treatment options may be limited for patients with rare alterations, healthcare professionals should identify patients most likely to benefit from oncogenic gene fusion testing and initiate the appropriate targeted therapy to achieve optimal treatment outcomes.
Collapse
Affiliation(s)
- Stephen V Liu
- Division of Hematology and Oncology, Georgetown University, Washington, DC, USA.
| | - Misako Nagasaka
- Division of Hematology Oncology, Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Judith Atz
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co.KG, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Pluchino M, Testi I, Minari R, Dodi A, Airò G, Mazzaschi G, Verzè M, Adorni A, Gnetti L, Azzoni C, Lagrasta CAM, Pecci F, Tiseo M. MET alterations as resistance mechanisms of dabrafenib-trametinib in BRAF p.V600E mutated non-small cell lung cancer patient. Anticancer Drugs 2024; 35:761-763. [PMID: 39115059 DOI: 10.1097/cad.0000000000001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The combination of BRAF and MEK inhibitors demonstrated significant clinical benefit in patients with BRAF-mutant non-small cell lung cancer (NSCLC). However, the molecular mechanisms of acquired resistance to BRAF and MEK inhibition in NSCLC are still unknown. Herein, we report a case of a 76-year-old man with a history of smoking who was diagnosed with BRAF V600E-mutant lung adenocarcinoma (PD-L1 > 50%) and subsequently candidate to first-line therapy with pembrolizumab. After 18 months since the start of immunotherapy, computed tomography scan showed disease progression and a second-line therapy with dabrafenib and trametinib was initiated. Seven months later, due to a suspect disease progression, a left supraclavicular lymphadenectomy was performed and next-generation sequencing analysis revealed the appearance of MET exon 14 skipping mutation, while fluorescence in situ hybridization analysis showed MET amplification. The patient is still on BRAF and MEK inhibitor treatment. Our case highlights the relevance of performing tumor tissue rebiopsy at the time of progression during treatment with BRAF/MEK inhibition with the aim of identifying putative mechanisms of resistance.
Collapse
Affiliation(s)
- Monica Pluchino
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Irene Testi
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Roberta Minari
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
| | - Alessandra Dodi
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona
| | - Giulia Airò
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Giulia Mazzaschi
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Michela Verzè
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Alessia Adorni
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Letizia Gnetti
- Oncology and Hematology Department, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Cinzia Azzoni
- Department of Medicine and Surgery, University of Parma, Parma
- Oncology and Hematology Department, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Costanza Anna Maria Lagrasta
- Department of Medicine and Surgery, University of Parma, Parma
- Oncology and Hematology Department, Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Federica Pecci
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| | - Marcello Tiseo
- Oncology and Hematology Department, Medical Oncology Unit, University Hospital of Parma
- Department of Medicine and Surgery, University of Parma, Parma
| |
Collapse
|
3
|
Patil T, Staley A, Nie Y, Sakamoto M, Stalker M, Jurica JM, Koehler K, Cass A, Kuykendall H, Schmitt E, Filar E, Reventaite E, Davies KD, Nijmeh H, Haag M, Yoder BA, Bunn PA, Schenk EL, Aisner DL, Iams WT, Marmarelis ME, Camidge DR. The Efficacy and Safety of Treating Acquired MET Resistance Through Combinations of Parent and MET Tyrosine Kinase Inhibitors in Patients With Metastatic Oncogene-Driven NSCLC. JTO Clin Res Rep 2024; 5:100637. [PMID: 38361741 PMCID: PMC10867444 DOI: 10.1016/j.jtocrr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Acquired MET gene amplification, MET exon 14 skip mutations, or MET fusions can emerge as resistance mechanisms to tyrosine kinase inhibitors (TKIs) in patients with lung cancer. The efficacy and safety of combining MET TKIs (such as crizotinib, capmatinib, or tepotinib) with parent TKIs to target acquired MET resistance are not well characterized. Methods Multi-institutional retrospective chart review identified 83 patients with metastatic oncogene-driven NSCLC that were separated into the following two pairwise matched cohorts: (1) MET cohort (n = 41)-patients with acquired MET resistance continuing their parent TKI with a MET TKI added or (2) Chemotherapy cohort (n = 42)-patients without any actionable resistance continuing their parent TKI with a platinum-pemetrexed added. Clinicopathologic features, radiographic response (by means of Response Evaluation Criteria in Solid Tumors version 1.1), survival outcomes, adverse events (AEs) (by means of Common Terminology Criteria for Adverse Events version 5.0), and genomic data were collected. Survival outcomes were assessed using Kaplan-Meier methods. Multivariate modeling adjusted for lines of therapy, brain metastases, TP53 mutations, and oligometastatic disease. Results Within the MET cohort, median age was 56 years (range: 36-83 y). Most patients were never smokers (28 of 41, 68.3%). Baseline brain metastases were common (21 of 41, 51%). The most common oncogenes in the MET cohort were EGFR (30 of 41, 73.2%), ALK (seven of 41, 17.1%), and ROS1 (two of 41, 4.9%). Co-occurring TP53 mutations (32 of 41, 78%) were frequent. Acquired MET alterations included MET gene amplification (37 of 41, 90%), MET exon 14 mutations (two of 41, 5%), and MET gene fusions (two of 41, 5%). After multivariate adjustment, the objective response rate (ORR) was higher in the MET cohort versus the chemotherapy cohort (ORR: 69.2% versus 20%, p < 0.001). Within the MET cohort, MET gene copy number (≥10 versus 6-10) did not affect radiographic response (54.5% versus 68.4%, p = 0.698). There was no difference in ORR on the basis of MET TKI used (F [2, 36] = 0.021, p = 0.978). There was no difference in progression-free survival (5 versus 6 mo; hazard ratio = 0.64; 95% confidence interval: 0.34-1.23, p = 0.18) or overall survival (13 versus 11 mo; hazard ratio = 0.75; 95% confidence interval: 0.42-1.35, p = 0.34) between the MET and chemotherapy cohorts. In the MET cohort, dose reductions for MET TKI-related toxicities were common (17 of 41, 41.4%) but less frequent for parent TKIs (two of 41, 5%). Grade 3 AEs were not significant between crizotinib, capmatinib, and tepotinib (p = 0.3). The discontinuation rate of MET TKIs was 17% with no significant differences between MET TKIs (p = 0.315). Among pre- and post-treatment biopsies (n = 17) in the MET cohort, the most common next-generation sequencing findings were loss of MET gene amplification (15 of 17, 88.2%), MET on-target mutations (seven of 17, 41.2%), new Ras-Raf-MAPK alterations (three of 17, 17.6%), and EGFR gene amplification (two of 17, 11.7%). Conclusions The efficacy and safety of combining MET TKIs (crizotinib, capmatinib, or tepotinib) with parent TKIs for acquired MET resistance are efficacious. Radiographic response and AEs did not differ significantly on the basis of the underlying MET TKI used. Loss of MET gene amplification, development of MET on-target mutations, Ras-Raf-MAPK alterations, and EGFR gene amplification were molecular patterns found on progression with dual parent and MET TKI combinations.
Collapse
Affiliation(s)
- Tejas Patil
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Alyse Staley
- University of Colorado Cancer Center Biostatistics Core, University of Colorado School of Medicine, Aurora, Colorado
| | - Yunan Nie
- Department of Medical Oncology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Mandy Sakamoto
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Margaret Stalker
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James M. Jurica
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Kenna Koehler
- Division of Medical Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Amanda Cass
- Division of Medical Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Halle Kuykendall
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Emily Schmitt
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Emma Filar
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Evelina Reventaite
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Kurt D. Davies
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Hala Nijmeh
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Mary Haag
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Benjamin A. Yoder
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul A. Bunn
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Erin L. Schenk
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Dara L. Aisner
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Wade T. Iams
- Division of Medical Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Melina E. Marmarelis
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|