1
|
El-Shiekh RA, Atwa AM, Elgindy AM, Ibrahim KM, Senna MM, Ebid N, Mustafa AM. Current Perspective and Mechanistic Insights on α-Hederin for the Prevention and Treatment of Several Noncommunicable Diseases. Chem Biodivers 2025; 22:e202402289. [PMID: 39607970 DOI: 10.1002/cbdv.202402289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
α-Hederin, a naturally occurring compound found in various plant sources, has remarkable properties and therapeutic potential for human health. One notable attribute is its potent anti-inflammatory activity, such as in arthritis, asthma, and inflammatory bowel disease. In addition, it exhibits notable antioxidant effects implicated in the development of chronic diseases, including cardiovascular disorders and certain types of cancer. According to research, it may limit the growth and proliferation of cancer cells, making it a possible candidate for future cancer treatments. Moreover, it is a promising neuroprotective agent and enhances cognitive function, suggesting its potential in the treatment of neurodegenerative illnesses like Alzheimer's and Parkinson's disease. The multifaceted benefits of α-hederin make it an intriguing compound with significant therapeutic implications. As research progresses, exploring its mechanisms of action and clinical applications is warranted. Harnessing the potential of α-hederin may pave the way for innovative treatment strategies and improved outcomes in the battle against various chronic diseases.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Faculty of Pharmacy, Department of Pharmacognosy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Ali M Elgindy
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Kawther Magdy Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
2
|
何 华, 刘 璐, 刘 颖, 陈 纳, 孙 素. [Sodium butyrate and sorafenib synergistically inhibit hepatocellular carcinoma cells possibly by inducing ferroptosis through inhibiting YAP]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1425-1430. [PMID: 39051089 PMCID: PMC11270652 DOI: 10.12122/j.issn.1673-4254.2024.07.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate whether sodium butyrate (NaB) and sorafenib synergistically induces ferroptosis to suppress proliferation of hepatocellular carcinoma cells and the possible underlying mechanisms. METHODS CCK8 assay and colony formation assay were used to assess the effects of NaB and sorafenib, alone or in combination, on proliferation of HepG2 cells, and ferroptosis of the treated cells was detected with GSH assay and C11-BODIPY 581/591 fluorescent probe. TCGA database was used to analyze differential YAP gene expression between liver cancer and normal tissues. The effects of NaB and sorafenib on YAP and p-YAP expressions in HepG2 cells were invesitigated using Western blotting. RESULTS NaB (2 mmol/L) significantly reduced the IC50 of sorafenib in HepG2 cells, and combination index analysis confirmed the synergy between sorafenib and NaB. The ferroptosis inhibitor Fer-1 and the YAP activator (XMU) obviously reversed the growthinhibitory effects of the combined treatment with NaB and sorafenib in HepG2 cells. The combined treatment with NaB and sorafenib, as compared with the two agents used alone, significantly inhibited colony formation of HepG2 cells, further enhanced cellular shrinkage and dispersion, and decreased intracellular GSH and lipid ROS levels, and these effects were reversed by Fer-1 and XMU. TCGA analysis revealed a higher YAP mRNA expression in liver cancer tissues than in normal liver tissues. NaB combined with sorafenib produced significantly stronger effects than the individual agents for downregulating YAP protein expression and upregulating YAP phosphorylation level in HepG2 cells. CONCLUSION NaB combined with sorafenib synergistically inhibit hepatocellular carcinoma cell proliferation possibly by inducing ferroptosis via inhibiting YAP expression.
Collapse
|
3
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Rao X, Li Z, Zhang Q, Lai Y, Liu J, Li L, Cheng H, Shen W, Sun D. α-Hederin induces paraptosis by targeting GPCRs to activate Ca 2+/MAPK signaling pathway in colorectal cancer. Cancer Med 2024; 13:e7202. [PMID: 38659391 PMCID: PMC11043672 DOI: 10.1002/cam4.7202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Non-apoptotic cell death is presently emerging as a potential direction to overcome the apoptosis resistance of cancer cells. In the current study, a natural plant agent α-hederin (α-hed) induces caspase-independent paraptotic modes of cell death. PURPOSE The present study is aimed to investigate the role of α-hed induces paraptosis and the associated mechanism of it. METHODS The cell proliferation was detected by CCK-8. The cytoplasm organelles were observed under electron microscope. Calcium (Ca2+) level was detected by flow cytometry. Swiss Target Prediction tool analyzed the potential molecule targets of α-hed. Molecular docking methods were used to evaluate binding abilities of α-hed with targets. The expressions of genes and proteins were analyzed by RT-qPCR, western blotting, immunofluorescence, and immunohistochemistry. Xenograft models in nude mice were established to evaluate the anticancer effects in vivo. RESULTS α-hed exerted significant cytotoxicity against a panel of CRC cell lines by inhibiting proliferation. Besides, it induced cytoplasmic vacuolation in all CRC cells. Electron microscopy images showed the aberrant dilation of endoplasmic reticulum and mitochondria. Both mRNA and protein expressions of Alg-2 interacting proteinX (Alix), the marker of paraptosis, were inhibited by α-hed. Besides, both Swiss prediction and molecular docking showed that the structure of α-hed could tightly target to GPCRs. GPCRs were reported to activate the phospholipase C (PLC)-β3/ inositol 1,4,5-trisphosphate receptor (IP3R)/ Ca2+/ protein kinase C alpha (PKCα) pathway, and we then found all proteins and mRNA expressions of PLCβ3, IP3R, and PKCα were increased by α-hed. After blocking the GPCR signaling, α-hed could not elevate Ca2+ level and showed less CRC cell cytotoxicity. MAPK cascade is the symbol of paraptosis, and we then demonstrated that α-hed activated MAPK cascade by elevating Ca2+ flux. Since non-apoptotic cell death is presently emerging as a potential direction to overcome chemo-drug resistance, we then found α-hed also induced paraptosis in 5-fluorouracil-resistant (5-FU-R) CRC cells, and it reduced the growth of 5-FU-R CRC xenografts. CONCLUSIONS Collectively, our findings proved α-hed as a promising candidate for inducing non-apoptotic cell death, paraptosis. It may overcome the resistance of apoptotic-based chemo-resistance in CRC.
Collapse
Affiliation(s)
- Xiwu Rao
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
- Department of OncologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Ziwen Li
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
| | - Qinchang Zhang
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
| | - Yueyang Lai
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
| | - Jianrong Liu
- Department of Infectious DiseaseNanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Liu Li
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
| | - Haibo Cheng
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
| | - Weixing Shen
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
| | - Dongdong Sun
- The First Clinical Medical College of Nanjing University of Chinese MedicineCollaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese MedicineNanjingChina
| |
Collapse
|
5
|
Chen H, Zhou H, Wu B, Lu H, Zhang J, Zhang Y, Gu Y, Zhou G, Xiang J, Yang J. Physical activity and exercise in liver cancer. LIVER RESEARCH 2024; 8:22-33. [PMID: 39959031 PMCID: PMC11771262 DOI: 10.1016/j.livres.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 02/18/2025]
Abstract
Sarcopenia and physical deconditioning are common complications in patients with liver cancer, which are frequently caused by insufficient physical activity and poor nutritional status, resulting in physical frailty and a significant impact on the patient's physical fitness. Notably, sarcopenia, frailty, and poor cardiopulmonary endurance have all been linked to higher mortality rates among patients with liver cancer. Exercise intervention significantly improves various health parameters in liver cancer patients, including metabolic syndrome, muscle wasting, cardiorespiratory endurance, health-related quality of life, and reduction in hepatic venous pressure gradient. However, the link between physical exercise and liver cancer is commonly overlooked. In this article, we will examine the impact of exercise on liver cancer and present the most recent evidence on the best types of exercise for various stages of liver cancer. This article also summarizes and discusses the molecular mechanisms that control metabolism and systemic immune function in tumors. In brief, physical exercise should be considered an important intervention in the prevention and treatment of liver cancer and its complications.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
- School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Huimin Zhou
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
- School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Wu
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
- School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Hanxiao Lu
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
- School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Zhang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yan Zhang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yuanlong Gu
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Guangwen Zhou
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai, China
| | - Jie Xiang
- Department of Endocrinology, Wuxi Mingci Cardiovascular Hospital, Wuxi, Jiangsu, China
| | - Jun Yang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Jiangsu, China
| |
Collapse
|
6
|
Chang Y, Gao X, Jiang Y, Wang J, Liu L, Yan J, Huang G, Yang H. Alpha-hederin reprograms multi-miRNAs activity and overcome small extracellular vesicles-mediated paclitaxel resistance in NSCLC. Front Pharmacol 2024; 15:1257941. [PMID: 38362150 PMCID: PMC10867254 DOI: 10.3389/fphar.2024.1257941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Background: Small extracellular vesicles (sEVs) mediate intercellular communication in the tumor microenvironment (TME) and contribute to the malignant transformation of tumors, including unrestricted growth, metastasis, or therapeutic resistance. However, there is a lack of agents targeting sEVs to overcome or reverse tumor chemotherapy resistance through sEVs-mediated TME reprogramming. Methods: The paclitaxel (PTX)-resistant A549T cell line was used to explore the inhibitory effect of alpha-hederin on impeding the transmission of chemoresistance in non-small cell lung cancer (NSCLC) through the small extracellular vesicles (sEVs) pathway. This investigation utilized the CCK-8 assay and flow cytometry. Transcriptomics, Western blot, oil red O staining, and targeted metabolomics were utilized to evaluate the impact of alpha-hederin on the expression of signaling pathways associated with chemoresistance transmission in NSCLC cells before and after treatment. In vivo molecular imaging and immunohistochemistry were conducted to assess how alpha-hederin influences the transmission of chemoresistance through the sEVs pathway. RT-PCR was employed to examine the expression of miRNA and lncRNA in response to alpha-hederin treatment. Results: The resistance to PTX chemotherapy in A549T cells was overcome by alpha-hederin through its dependence on sEV secretion. However, the effectiveness of alpha-hederin was compromised when vesicle secretion was blocked by the GW4869 inhibitor. Transcriptomic analysis for 463 upregulated genes in recipient cells exposed to A549T-derived sEVs revealed that these sEVs enhanced TGFβ signaling and unsaturated fatty acid synthesis pathways. Alpha-hederin inhibited 15 types of unsaturated fatty acid synthesis by reducing the signaling activity of the sEVs-mediated TGFβ/SMAD2 pathway. Further, we observed that alpha-hederin promoted the production of three microRNAs (miRNAs, including miR-21-5p, miR-23a-3p, and miR-125b-5p) and the sorting to sEVs in A549T cells. These miRNAs targeted the TGFβ/SMADs signaling activity in sEVs-recipient cells and sensitized them to the PTX therapy. Conclusion: Our finding demonstrated that alpha-hederin could sensitize PTX-resistant NSCLC cells by sEV-mediated multiple miRNAs accumulation, and inhibiting TGFβ/SMAD2 pathways in recipient cells.
Collapse
Affiliation(s)
- Yuzhen Chang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuchen Jiang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jingyi Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|