1
|
Turkez H, Alper F, Bayram C, Baba C, Yıldız E, Saracoglu M, Kucuk M, Gozegir B, Kiliclioglu M, Yeşilyurt M, Tozlu OO, Bolat I, Yildirim S, Barutcigil MF, Isik F, Kiki Ö, Aydın F, Arslan ME, Cadircı K, Karaman A, Tatar A, Hacımüftüoğlu A. Boric acid impedes glioblastoma growth in a rat model: insights from multi-approach analysis. Med Oncol 2025; 42:47. [PMID: 39821858 PMCID: PMC11742329 DOI: 10.1007/s12032-025-02600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties. This study aimed to examine whether boron supplementation, as BA, can inhibit glioblastoma growth in a xenograft animal model. Using MRI-based tumor size measurement, survival rates, hematological, clinical biochemistry analyses, and genotoxicity parameters, we assessed the impact of BA. Histopathological, immunohistochemical, and immunofluorescence examinations were also conducted. All BA doses (3.25, 6.5, and 13 mg kg-1 b.w.) extended survival compared to GBM controls after 14 days, with a dose-dependent anti-GBM effect observed in MRI analyses. BA treatment improved hematological (WBC and PLT counts) and biochemical parameters (LDL-C, CREA, and ALP). Histopathological examination revealed a significant reduction in tumor diameter with 6.5 and 13 mg kg-1 BA. Immunohistochemical and immunofluorescence staining showed modulation of intracytoplasmic Ki67, cytoplasmic CMPK2, and GFAP expressions in tumor cells post-BA treatment. Additionally, BA did not increase micronuclei formations, indicating its non-genotoxic nature. In conclusion, targeting tumor suppressor networks with boron demonstrates significant therapeutic potential for GBM treatment.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Alper
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cem Baba
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
- Trustlife Labs, Drug Research & Development Center, Istanbul, Turkey
| | - Edanur Yıldız
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Melik Saracoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Muhammed Kucuk
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Berrah Gozegir
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Metin Kiliclioglu
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Mustafa Yeşilyurt
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | | | - Fatih Isik
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Özlem Kiki
- Department of Medical Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Fahri Aydın
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Kenan Cadircı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| | - Adem Karaman
- Department of Radiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Lück AS, Pu J, Melhem A, Schneider M, Sharma A, Schmidt-Wolf IGH, Maciaczyk J. Preclinical evaluation of DC-CIK cells as potentially effective immunotherapy model for the treatment of glioblastoma. Sci Rep 2025; 15:734. [PMID: 39753685 PMCID: PMC11698714 DOI: 10.1038/s41598-024-84284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment. The analysis showed that DC-CIK cells exerted a significant cytotoxic effect on the glioblastoma cell lines, especially with the phenotype of stem-like cells (GSCs). In addition, the increased specific lysis of these cells subsequent to DC-CIK co-culture was confirmed with confocal fluorescence microscope. The direct interactions between tumor and effector cells were found to be highly effective in GBM organoids (GBOs). Moreover, a significant increase in apoptosis and elevated levels of IFN-γ (and not TNF-α) secretion were observed as a targeting mechanism of DC-CIK cells against GBM cell models. Overall, we provide important preliminary evidence that DC-CIK cells may have potential in the treatment of CNS malignancies, particularly glioblastoma.
Collapse
Affiliation(s)
- Annika Simone Lück
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany
| | - Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany
| | - Ahmad Melhem
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Amit Sharma
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany.
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127, Bonn, Germany.
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, 53127, Bonn, Germany.
- Department of Surgical Sciences, Otago University, Dunedin, New Zealand.
| |
Collapse
|
3
|
Duerinck J, Lescrauwaet L, Dirven I, Del’haye J, Stevens L, Geeraerts X, Vaeyens F, Geens W, Brock S, Vanbinst AM, Everaert H, Caljon B, Bruneau M, Lebrun L, Salmon I, Kockx M, Tuyaerts S, Neyns B. Intracranial administration of anti-PD-1 and anti-CTLA-4 immune checkpoint-blocking monoclonal antibodies in patients with recurrent high-grade glioma. Neuro Oncol 2024; 26:2208-2221. [PMID: 39406392 PMCID: PMC11630548 DOI: 10.1093/neuonc/noae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Recurrent high-grade glioma (rHGG) lacks effective life-prolonging treatments and the efficacy of systemic PD-1 and CTLA-4 immune checkpoint inhibitors is limited. The multi-cohort Glitipni phase I trial investigates the safety and feasibility of intraoperative intracerebral (iCer) and postoperative intracavitary (iCav) nivolumab (NIVO) ± ipilimumab (IPI) treatment following maximal safe resection (MSR) in rHGG. MATERIALS AND METHODS Patients received 10 mg IV NIVO within 24 h before surgery, followed by MSR, iCer 5 mg IPI and 10 mg NIVO, and Ommaya catheter placement in the resection cavity. Biweekly postoperative iCav administrations of 1-5-10 mg NIVO (cohort 4) or 10 mg NIVO plus 1-5-10 mg IPI (cohort 7) were combined with 10 mg IV NIVO for 11 cycles. RESULTS 42 rHGG patients underwent MSR with iCer NIVO + IPI. 16 pts were treated in cohort 4 (postoperative iCav NIVO at escalating doses) while 28 patients were treated in cohort 7 (intra and postoperative iCav NIVO and escalating doses of IPI). The most common TRAE was fatigue; no grade 5 AE occurred. Dose-limiting toxicity was grade 3 neutrophilic pleocytosis (4 pts) receiving iCav NIVO plus 5 or 10 mg IPI. PFS and OS did not significantly differ between cohorts (median OS: 42 [95% CI 26-57] vs. 35 [29-40] weeks; 1-year OS rate: 37% vs. 29%). Baseline B7-H3 expression significantly correlated with worse survival. OS compared favorably to a historical pooled cohort (n = 469) of Belgian rHGG pts treated with anti-VEGF therapies (log-rank P = .015). CONCLUSION Intraoperative iCer IPI + NIVO with postoperative iCav NIVO ± IPI up to biweekly doses of 1 mg IPI + 10 mg NIVO is feasible and safe, showing encouraging OS in rHGG patients. ClinicalTrials.gov registration: NCT03233152.
Collapse
Affiliation(s)
- Johnny Duerinck
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Louise Lescrauwaet
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iris Dirven
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jacomi Del’haye
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Latoya Stevens
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Xenia Geeraerts
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Freya Vaeyens
- Department of Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Wietse Geens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ben Caljon
- Department of Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michaël Bruneau
- Department of Neurosurgery, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laetitia Lebrun
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | | | - Sandra Tuyaerts
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
4
|
Müller EG, Dahlberg D, Hassel B, Revheim ME, Connelly JP. Brain Abscess Causes Brain Damage With Long-Lasting Focal Cerebral Hypoactivity that Correlates With Abscess Size: A Cross-Sectional 18F-Fluoro-Deoxyglucose Positron Emission Tomography Study. Neurosurgery 2024:00006123-990000000-01436. [PMID: 39526777 DOI: 10.1227/neu.0000000000003268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Bacterial brain abscesses may have long-term clinical consequences, eg, mental fatigue or epilepsy, but long-term structural consequences to the brain remain underexplored. We asked if brain abscesses damage brain activity long term, if the extent of such damage depends on the size of the abscess, and if the abscess capsule, which is often left in place during neurosurgery, remains a site of inflammation, which could explain long-lasting symptoms in patients with brain abscess. METHODS 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG-PET/CT), electroencephalography, and MRI were performed 2 days to 9 years after neurosurgery for bacterial brain abscess. RESULTS FDG-PET/CT revealed hypometabolism in the neocortex or cerebellum overlying the previous bacterial abscess in 38 of 40 patients. The larger the abscess, the greater was the extent of the subsequent hypometabolism (r = 0.63; p = 3 × 10-5). In 9 patients, the extent of subsequent hypometabolism seemed to coincide with the extent of peri-abscess edema in the acute phase. Follow-up MRI after ≥1 year in 9 patients showed focal tissue loss and gliosis. In 13 patients with abnormal electroencephalography recordings, abnormalities extended beyond the cerebral lobe affected by the abscess, indicating damage to wider brain networks. The abscess capsule had an FDG signal indicating inflammation only during the first week after neurosurgical pus drainage. CONCLUSION The bigger a brain abscess is allowed to grow, the more extensive is the long-term focal reduction in brain activity. This finding emphasizes the need for rapid neurosurgical intervention. The abscess capsule does not display long-lasting inflammation and probably does not explain long-term symptoms after brain abscess.
Collapse
Affiliation(s)
- Ebba Gløersen Müller
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Bjørnar Hassel
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
- Department of Neurohabilitation and Complex Neurology, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Technology and Innovation, The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - James Patrick Connelly
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Zhang A, Peng S, Sun S, Ye S, Zhao Y, Wu Q. NRBP1 promotes malignant phenotypes of glioblastoma by regulating PI3K/Akt activation. Cancer Med 2024; 13:e70100. [PMID: 39149873 PMCID: PMC11327863 DOI: 10.1002/cam4.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVES Glioblastoma (GBM) is the most aggressive of intracranial gliomas. Despite the maximal treatment intervention, the median survival rate is still about 14-16 months. Nuclear receptor-binding protein 1 (NRBP1) has a potential growth-promoting role on biology function of cells. In this study, we investigated whether NRBP1 promotes GBM malignant phenotypes and the potential mechanisms. METHODS The correlation between NRBP1 and glioma grade, prognosis in TCGA/CGGA databases and our clinical data were analyzed. Next, we conducted knockout and overexpression of NRBP1 on GBM cells to verify that NRBP1 promoted cell proliferation, invasion, and migration in vitro and in vivo. Finally, we detected the impact of NRBP1 on PI3K/Akt signaling pathway and EMT. RESULTS There was a correlation between elevated NRBP1 expression and advanced stage glioma, as well as decreased overall and disease-free survival. The suppression of proliferation, invasion, and migration of tumor cells was observed upon NRBP1 knockout, and in vitro studies also demonstrated the induction of apoptotic cell death. Whereas, its overexpression is associated with high multiplication rate, migration, invasion, and apoptotic escape. GO enrichment and KEGG analysis revealed that NRBP1 regulated differentially expressed gene clusters are involved in PI3K/Akt signaling pathway, as well as EMT mediated by this pathway. Moreover, the effects of NRBP1 knockdown and overexpression on GBM were mitigated by MK-2206 and SC79, both of which respectively function as an inhibitor and an activator of the PI3K/Akt signaling pathway. Similarly, the suppression of NRBP1 led to a decrease in tumor growth, whereas its overexpression promoted tumor growth in a mouse model. CONCLUSIONS This study shows that NRBP1 promotes malignant phenotypes in GBM by activating PI3K/Akt pathway. Hence, it can function as both a predictive indicator and a new target for therapies in GBM treatment.
Collapse
Affiliation(s)
- Anli Zhang
- Department of PathologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Division of Life Sciences and Medicine, Department of Pathology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Shichao Peng
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Sibai Sun
- Division of Life Sciences and Medicine, Department of Pathology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Shan Ye
- Division of Life Sciences and Medicine, Department of Pathology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Qiang Wu
- Department of PathologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
6
|
Kurokawa M, Kurokawa R, Baba A, Gomi T, Cho S, Yoshioka K, Harada T, Kim J, Emile P, Abe O, Moritani T. Neuroimaging Features of Cytokine-related Diseases. Radiographics 2024; 44:e230069. [PMID: 38696321 DOI: 10.1148/rg.230069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Cytokines are small secreted proteins that have specific effects on cellular interactions and are crucial for functioning of the immune system. Cytokines are involved in almost all diseases, but as microscopic chemical compounds they cannot be visualized at imaging for obvious reasons. Several imaging manifestations have been well recognized owing to the development of cytokine therapies such as those with bevacizumab (antibody against vascular endothelial growth factor) and chimeric antigen receptor (CAR) T cells and the establishment of new disease concepts such as interferonopathy and cytokine release syndrome. For example, immune effector cell-associated neurotoxicity is the second most common form of toxicity after CAR T-cell therapy toxicity, and imaging is recommended to evaluate the severity. The emergence of COVID-19, which causes a cytokine storm, has profoundly impacted neuroimaging. The central nervous system is one of the systems that is most susceptible to cytokine storms, which are induced by the positive feedback of inflammatory cytokines. Cytokine storms cause several neurologic complications, including acute infarction, acute leukoencephalopathy, and catastrophic hemorrhage, leading to devastating neurologic outcomes. Imaging can be used to detect these abnormalities and describe their severity, and it may help distinguish mimics such as metabolic encephalopathy and cerebrovascular disease. Familiarity with the neuroimaging abnormalities caused by cytokine storms is beneficial for diagnosing such diseases and subsequently planning and initiating early treatment strategies. The authors outline the neuroimaging features of cytokine-related diseases, focusing on cytokine storms, neuroinflammatory and neurodegenerative diseases, cytokine-related tumors, and cytokine-related therapies, and describe an approach to diagnosing cytokine-related disease processes and their differentials. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Mariko Kurokawa
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Ryo Kurokawa
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Akira Baba
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Taku Gomi
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Shinichi Cho
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Kyohei Yoshioka
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Taisuke Harada
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - John Kim
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Pinarbasi Emile
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Osamu Abe
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| | - Toshio Moritani
- From the Department of Radiology, Division of Neuroradiology (M.K., R.K., A.B., T.G., S.C., K.Y., J.K., T.M.), and Department of Pathology (P.E.), University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., R.K., S.C., K.Y., O.A.); Department of Radiology, The Jikei University School of Medicine, Tokyo, Japan (A.B., T.G.); and Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan (T.H.)
| |
Collapse
|
7
|
Dahlberg D, Holm S, Sagen EML, Michelsen AE, Stensland M, de Souza GA, Müller EG, Connelly JP, Revheim ME, Halvorsen B, Hassel B. Bacterial Brain Abscesses Expand Despite Effective Antibiotic Treatment: A Process Powered by Osmosis Due to Neutrophil Cell Death. Neurosurgery 2023; 94:00006123-990000000-00996. [PMID: 38084989 PMCID: PMC10990409 DOI: 10.1227/neu.0000000000002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES A bacterial brain abscess is an emergency and should be drained of pus within 24 hours of diagnosis, as recently recommended. In this cross-sectional study, we investigated whether delaying pus drainage entails brain abscess expansion and what the underlying mechanism might be. METHODS Repeated brain MRI of 47 patients who did not undergo immediate pus drainage, pus osmolarity measurements, immunocytochemistry, proteomics, and 18F-fluorodeoxyglucose positron emission tomography. RESULTS Time from first to last MRI before neurosurgery was 1 to 14 days. Abscesses expanded in all but 2 patients: The median average increase was 23% per day (range 0%-176%). Abscesses expanded during antibiotic therapy and even if the pus did not contain viable bacteria. In a separate patient cohort, we found that brain abscess pus tended to be hyperosmolar (median value 360 mOsm; range 266-497; n = 14; normal cerebrospinal fluid osmolarity is ∼290 mOsm). Hyperosmolarity would draw water into the abscess cavity, causing abscess expansion in a ballooning manner through increased pressure in the abscess cavity. A mechanism likely underlying pus hyperosmolarity was the recruitment of neutrophils to the abscess cavity with ensuing neutrophil cell death and decomposition of neutrophil proteins and other macromolecules to osmolytes: Pus analysis showed the presence of neutrophil proteins (protein-arginine deiminases, citrullinated histone, myeloperoxidase, elastase, cathelicidin). Previous studies have shown very high levels of osmolytes (ammonia, amino acids) in brain abscess pus. 18F-fluorodeoxyglucose positron emission tomography showed focal neocortical hypometabolism 1 to 8 years after brain abscess, indicating long-lasting damage to brain tissue. CONCLUSION Brain abscesses expand despite effective antibiotic treatment. Furthermore, brain abscesses cause lasting damage to surrounding brain tissue. These findings support drainage of brain abscesses within 24 hours of diagnosis.
Collapse
Affiliation(s)
- Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ellen Margaret Lund Sagen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika Elisabet Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Stensland
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway
| | - Gustavo Antonio de Souza
- Institute of Immunology and Centre for Immune Regulation, Oslo University Hospital, Oslo, Norway
- Department of Biochemistry, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | - Ebba Gløersen Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - James Patrick Connelly
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørnar Hassel
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
| |
Collapse
|
8
|
Jarmuzek P, Defort P, Kot M, Wawrzyniak-Gramacka E, Morawin B, Zembron-Lacny A. Cytokine Profile in Development of Glioblastoma in Relation to Healthy Individuals. Int J Mol Sci 2023; 24:16206. [PMID: 38003396 PMCID: PMC10671437 DOI: 10.3390/ijms242216206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cytokines play an essential role in the control of tumor cell development and multiplication. However, the available literature provides ambiguous data on the involvement of these proteins in the formation and progression of glioblastoma (GBM). This study was designed to evaluate the inflammatory profile and to investigate its potential for the identification of molecular signatures specific to GBM. Fifty patients aged 66.0 ± 10.56 years with newly diagnosed high-grade gliomas and 40 healthy individuals aged 71.7 ± 4.9 years were included in the study. White blood cells were found to fall within the referential ranges and were significantly higher in GBM than in healthy controls. Among immune cells, neutrophils showed the greatest changes, resulting in elevated neutrophil-to-lymphocyte ratio (NLR). The neutrophil count inversely correlated with survival time expressed by Spearman's coefficient rs = -0.359 (p = 0.010). The optimal threshold values corresponded to 2.630 × 103/µL for NLR (the area under the ROC curve AUC = 0.831, specificity 90%, sensitivity 76%, the relative risk RR = 7.875, the confidence intervals 95%CI 3.333-20.148). The most considerable changes were recorded in pro-inflammatory cytokines interleukin IL-1β, IL-6, and IL-8, which were approx. 1.5-2-fold higher, whereas tumor necrosis factor α (TNFα) and high mobility group B1 (HMGB1) were lower in GBM than healthy control (p < 0.001). The results of the ROC, AUC, and RR analysis of IL-1β, IL-6, IL-8, and IL-10 indicate their high diagnostics potential for clinical prognosis. The highest average RR was observed for IL-6 (RR = 2.923) and IL-8 (RR = 3.151), which means there is an approx. three-fold higher probability of GBM development after exceeding the cut-off values of 19.83 pg/mL for IL-6 and 10.86 pg/mL for IL-8. The high values of AUC obtained for the models NLR + IL-1β (AUC = 0.907), NLR + IL-6 (AUC = 0.908), NLR + IL-8 (AUC = 0.896), and NLR + IL-10 (AUC = 0.887) prove excellent discrimination of GBM patients from healthy individuals and may represent GBM-specific molecular signatures.
Collapse
Affiliation(s)
- Pawel Jarmuzek
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Piotr Defort
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Marcin Kot
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| |
Collapse
|
9
|
Zilioli A, Misirocchi F, Mutti C, Pancaldi B, Mannini E, Spallazzi M, Parrino L, Cerasti D, Michiara M, Florindo I. Volumetric hippocampal changes in glioblastoma: a biomarker for neuroplasticity? J Neurooncol 2023; 163:261-267. [PMID: 37178276 DOI: 10.1007/s11060-023-04315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE The pleiotropic effect of gliomas on the development of cognitive disorders and structural brain changes has garnered increasing interest in recent years. While it is widely accepted that multimodal therapies for brain cancer can foster cognitive impairment, the direct effect of gliomas on critical cognitive areas before anti-tumor therapies is still controversial. In this study, we focused on the effect of IDH1 wild-type glioblastoma on the human hippocampus volume. METHODS We carried out a case-control study using voxel-based morphometry assessment, analyzed with the Computational Anatomy Toolbox software. Glioblastoma diagnosis was performed according to the latest 2021 WHO classification. Due to stringent inclusion criteria, 15 patients affected by IDH1 wild type glioblastoma were included and compared to 19 age-matched controls. RESULTS We observed a statistically significant increase in the absolute mean hippocampal volume (p = 0.017), as well as in the ipsilateral (compared to the lesion, p = 0.027) and the contralateral hippocampal volumes (p = 0.014) in the group of patients. When the data were normalized per total intracranial volume, we confirmed a statistically significant increase only in the contralateral hippocampal volume (p = 0.042). CONCLUSIONS To the best of our knowledge, this is the first study to explore hippocampal volumetric changes in a cohort of adult patients affected by IDH1 wild-type glioblastoma, according to the latest WHO classification. We demonstrated an adaptive volumetric response of the hippocampus, which was more pronounced on the side contralateral to the lesion, suggesting substantial integrity and resilience of the medial temporal structures before the initiation of multimodal treatments.
Collapse
Affiliation(s)
- Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy.
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Beatrice Pancaldi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Elisa Mannini
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, University Hospital of Parma, Parma, Italy
| | - Liborio Parrino
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Davide Cerasti
- Neuroradiology Unit, University Hospital of Parma, Parma, Italy
| | - Maria Michiara
- Department of Medicine and Surgery, Unit of Oncology, University of Parma, Parma, Italy
| | - Irene Florindo
- Department of Medicine and Surgery, Unit of Neurology, University Hospital of Parma, Parma, Italy
| |
Collapse
|
10
|
Kim MJ, Park JS, Jeun SS, Ahn S. A clinical evaluation of cystic features in patients with newly diagnosed glioblastoma with IDH-wildtype. Clin Neurol Neurosurg 2023; 228:107708. [PMID: 37043844 DOI: 10.1016/j.clineuro.2023.107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND The prognostic significance of the presence of cystic features in patients with newly diagnosed glioblastoma (GB) is highly controversial. The purpose of this study was to determine whether cystic GB patients have a more favorable prognosis compared to non-cystic GB patients. METHODS The records of all GB patients diagnosed between August 2008 and December 2020 at Seoul St. Mary's Hospital were reviewed retrospectively. Out of 254 GB patients, we excluded patients with a confirmed isocitrate dehydrogenase (IDH) mutation or an unknown IDH mutation status. A total of 145 patients met our eligibility criteria. RESULTS Of the 145 patients we analyzed, 16 patients were classified as the cystic group, and 129 patients were classified into the non-cystic group. As there was a significant difference in the extent of resection between the two groups, 32 patients were matched according to propensity score matching. A Kaplan-Meier survival curve of the two groups indicated that the cystic group had better survival than the non-cystic group (28.6 months versus 18.8 months, respectively; p = 0.055). On multivariate analysis, the presence of cystic features (hazard ratio [HR]: 0.40, 95% confidence interval [CI]: 0.17-0.91, p = 0.029) was significantly related with a longer OS. Longer OS was also related with well-known prognostic factors, such as grossly total resection (HR: 0.05, CI: 0.01-0.31, respectively; p = 0.001) and lower European Cooperative Oncology Group (ECOG) score (HR: 3.67, CI: 1.56-9.02, respectively; p = 0.003). CONCLUSION Our results suggest that the presence of cystic features could be an independent prognostic factor suggesting better survival in GB patients. Further larger and prospective studies to validate our findings are needed.
Collapse
Affiliation(s)
- Min Joo Kim
- College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, the Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|