1
|
Li H, Zhuang Y, Yuan W, Gu Y, Dai X, Li M, Chen H, Zhou H. Radiomics in precision medicine for colorectal cancer: a bibliometric analysis (2013-2023). Front Oncol 2024; 14:1464104. [PMID: 39558950 PMCID: PMC11571149 DOI: 10.3389/fonc.2024.1464104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/04/2024] [Indexed: 11/20/2024] Open
Abstract
Background The incidence and mortality of colorectal cancer (CRC) have been rising steadily. Early diagnosis and precise treatment are essential for improving patient survival outcomes. Over the past decade, the integration of artificial intelligence (AI) and medical imaging technologies has positioned radiomics as a critical area of research in the diagnosis, treatment, and prognosis of CRC. Methods We conducted a comprehensive review of CRC-related radiomics literature published between 1 January 2013 and 31 December 2023 using the Web of Science Core Collection database. Bibliometric tools such as Bibliometrix, VOSviewer, and CiteSpace were employed to perform an in-depth bibliometric analysis. Results Our search yielded 1,226 publications, revealing a consistent annual growth in CRC radiomics research, with a significant rise after 2019. China led in publication volume (406 papers), followed by the United States (263 papers), whereas the United States dominated in citation numbers. Notable institutions included General Electric, Harvard University, University of London, Maastricht University, and the Chinese Academy of Sciences. Prominent researchers in this field are Tian J from the Chinese Academy of Sciences, with the highest publication count, and Ganeshan B from the University of London, with the most citations. Journals leading in publication and citation counts are Frontiers in Oncology and Radiology. Keyword and citation analysis identified deep learning, texture analysis, rectal cancer, image analysis, and management as prevailing research themes. Additionally, recent trends indicate the growing importance of AI and multi-omics integration, with a focus on improving precision medicine applications in CRC. Emerging keywords such as deep learning and AI have shown rapid growth in citation bursts over the past 3 years, reflecting a shift toward more advanced technological applications. Conclusions Radiomics plays a crucial role in the clinical management of CRC, providing valuable insights for precision medicine. It significantly contributes to predicting molecular biomarkers, assessing tumor aggressiveness, and monitoring treatment efficacy. Future research should prioritize advancing AI algorithms, enhancing multi-omics data integration, and further expanding radiomics applications in CRC precision medicine.
Collapse
Affiliation(s)
- Hao Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yupei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yutian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyan Dai
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Muhan Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Yang L, Wang B, Shi X, Li B, Xie J, Wang C. Application research of radiomics in colorectal cancer: A bibliometric study. Medicine (Baltimore) 2024; 103:e37827. [PMID: 38608072 PMCID: PMC11018182 DOI: 10.1097/md.0000000000037827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Radiomics has shown great potential in the clinical field of colorectal cancer (CRC). However, few bibliometric studies have systematically analyzed existing research in this field. The purpose of this study is to understand the current research status and future development directions of CRC. METHODS Search the English documents on the application of radiomics in the field of CRC research included in the Web of Science Core Collection from its establishment to October 2023. VOSviewer and CiteSpace software were used to conduct bibliometric and visual analysis of online publications related to countries/regions, authors, journals, references, and keywords in this field. RESULTS A total of 735 relevant documents published from Web of Science Core Collection to October 2023 were retrieved, and a total of 419 documents were obtained based on the screening criteria, including 376 articles and 43 reviews. The number of publications is increasing year by year. Among them, China publishes the most relevant documents (n = 238), which is much higher than Italy (n = 69) and the United States (n = 63). Tian Jie is the author with the most publications and citations (n = 17, citations = 2128), GE Healthcare is the most productive institution (n = 26), Frontiers in Oncology is the journal with the most publications (n = 60), and European Radiology is the most cited journal (n = 776). Hot spots for the application of radiomics in CRC include magnetic resonance, neoadjuvant chemoradiotherapy, survival, texture analysis, and machine learning. These directions are the current hot spots for the application of radiomics research in CRC and may be the direction of continued development in the future. CONCLUSION Through bibliometric analysis, the application of radiomics in CRC has been increasing year by year. The application of radiomics improves the accuracy of preoperative diagnosis, prediction, and prognosis of CRC. The results of bibliometrics analysis provide a valuable reference for the research direction of radiomics. However, radiomics still faces many challenges in the future, such as the single nature of the data source which may affect the comprehensiveness of the results. Future studies can further expand the data sources and build a multicenter public database to more comprehensively reflect the research status and development trend of CRC radiomics.
Collapse
Affiliation(s)
- Lihong Yang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Binjie Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Xiaoying Shi
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Bairu Li
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Jiaqiang Xie
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Changfu Wang
- Department of Radiology and Medical Imaging Research Institute, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|
3
|
Lo CM, Jiang JK, Lin CC. Detecting microsatellite instability in colorectal cancer using Transformer-based colonoscopy image classification and retrieval. PLoS One 2024; 19:e0292277. [PMID: 38271352 PMCID: PMC10810505 DOI: 10.1371/journal.pone.0292277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/15/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer (CRC) is a major global health concern, with microsatellite instability-high (MSI-H) being a defining characteristic of hereditary nonpolyposis colorectal cancer syndrome and affecting 15% of sporadic CRCs. Tumors with MSI-H have unique features and better prognosis compared to MSI-L and microsatellite stable (MSS) tumors. This study proposed establishing a MSI prediction model using more available and low-cost colonoscopy images instead of histopathology. The experiment utilized a database of 427 MSI-H and 1590 MSS colonoscopy images and vision Transformer (ViT) with different feature training approaches to establish the MSI prediction model. The accuracy of combining pre-trained ViT features was 84% with an area under the receiver operating characteristic curve of 0.86, which was better than that of DenseNet201 (80%, 0.80) in the experiment with support vector machine. The content-based image retrieval (CBIR) approach showed that ViT features can obtain a mean average precision of 0.81 compared to 0.79 of DenseNet201. ViT reduced the issues that occur in convolutional neural networks, including limited receptive field and gradient disappearance, and may be better at interpreting diagnostic information around tumors and surrounding tissues. By using CBIR, the presentation of similar images with the same MSI status would provide more convincing deep learning suggestions for clinical use.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colon and Rectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Lin
- Department of Surgery, Division of Colon and Rectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Yuan S, Shen DD, Jia R, Sun JS, Song J, Liu HM. New drug approvals for 2022: Synthesis and clinical applications. Med Res Rev 2023; 43:2352-2391. [PMID: 37211904 DOI: 10.1002/med.21976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
The U.S. Food and Drug Administration has approved a total of 37 new drugs in 2022, which are composed of 20 chemical entities and 17 biologics. In particular, 20 chemical entities, including 17 small molecule drugs, 1 radiotherapy, and 2 diagnostic agents, provide privileged scaffolds, breakthrough clinical benefits, and a new mechanism of action for the discovery of more potent clinical candidates. The structure-based drug development with clear targets and fragment-based drug development with privileged scaffolds have always been the important modules in the field of drug discovery, which could easily bypass the patent protection and bring about improved biological activity. Therefore, we summarized the relevant valuable information about clinical application, mechanism of action, and chemical synthesis of 17 newly approved small molecule drugs in 2022. We hope this timely and comprehensive review could bring about creative and elegant inspiration on the synthetic methodologies and mechanism of action for the discovery of new drugs with novel chemical scaffolds and extended clinical indications.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Jia
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ju-Shan Sun
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Jian Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|