1
|
Karimian-Jazi K, Enbergs N, Golubtsov E, Schregel K, Ungermann J, Fels-Palesandro H, Schwarz D, Sturm V, Kernbach JM, Batra D, Ippen FM, Pflüger I, von Knebel Doeberitz N, Heiland S, Bunse L, Platten M, Winkler F, Wick W, Paech D, Bendszus M, Breckwoldt MO. Differentiating Glioma Recurrence and Pseudoprogression by APTw CEST MRI. Invest Radiol 2025; 60:414-422. [PMID: 39644107 DOI: 10.1097/rli.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
OBJECTIVES Recurrent glioma is highly treatment resistant due to its metabolic, cellular, and molecular heterogeneity and invasiveness. Tumor monitoring by conventional MRI has shortcomings to assess these key glioma characteristics. Recent studies introduced chemical exchange saturation transfer for metabolic imaging in oncology and assessed its diagnostic value for newly diagnosed glioma. This prospective study investigates amide proton transfer-weighted (APTw) MRI at 3 T as an imaging biomarker to elucidate the molecular heterogeneity and invasion patterns of recurrent glioma in comparison to pseudoprogression (PsPD). MATERIALS AND METHODS We performed a monocenter, prospective trial and screened 371 glioma patients who received tumor monitoring between August 2021 and March 2024 at our institution. The study included IDH wildtype astrocytoma and IDH mutant astrocytoma and oligodendroglioma, graded according to the WHO 2021 classification. Patients had received clinical standard of care treatment including surgical resection and radiochemotherapy prior to study inclusion. Patients were monitored by 3 monthly MRI follow-up imaging, and response assessment was performed according to the RANO criteria. Within this cohort, we identified 30 patients who presented with recurrent glioma and 12 patients with PsPD. In addition to standard anatomical sequences (FLAIR and T1-w Gd-enhanced sequences), MRI included APTw imaging. After sequence co-registration, semiautomated segmentation was performed of the FLAIR lesion, CE lesion, resection cavity, and the contralateral normal-appearing white matter, and APTw signals were quantified in these regions of interest. RESULTS APTw values were highest in solid, Gd-enhancing tumor parts as compared with the nonenhancing FLAIR lesion (APTw: 1.99% vs 1.36%, P = 0.001), whereas there were no detectable APTw alterations in the normal-appearing white matter (APTw: 0.005%, P < 0.001 compared with FLAIR). Patients with progressive disease had higher APTw levels compared with patients with PsPD (APTw: 1.99% vs 1.26%, P = 0.008). Chemical exchange saturation transfer identified heterogeneity within the FLAIR lesion that was not detectable by conventional sequences. There were also focal APTw signal peaks within contrast enhancing lesions as putative metabolic hotspots within recurrent glioma. The resection cavity developed an APTw increase at recurrence that was not detectable prior to recurrence nor in patients with PsPD (APTw before recurrence: 0.6% vs 2.68% at recurrence, P = 0.03). CONCLUSIONS Our study shows that APTw imaging can differentiate PD and PsPD. We identify previously undetectable imaging patterns during glioma recurrence, which include alterations within resection cavity associated with disease progression. Our work highlights the clinical potential of APTw imaging for glioma monitoring and further establishes it as an imaging biomarker in neuro-oncology.
Collapse
Affiliation(s)
- Kianush Karimian-Jazi
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (K.K.-J., N.E., E.G., K.S., J.U., H.F.-P., D.S., V.S., J.M.K., I.P., S.H., M.B., M.O.B.); Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany (K.K.-J., F.W., W.W.); Department of Neurology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany (D.B., F.M.I., F.W., W.W.); DKTK, DKFZ, Clinical Cooperation Unit Neuropathology, Heidelberg, Germany (F.M.I.); Division of Radiology, DKFZ, Heidelberg, Germany (N.V., D.P.); Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKTK, DKFZ, Heidelberg, Germany (L.B., M.P., M.O.B.); Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany (L.B., M.P.); Division of Neuroradiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); and Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany (D.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Essed RA, Prysiazhniuk Y, Wamelink IJ, Azizova A, Keil VC. Performance of amide proton transfer imaging to differentiate true progression from therapy-related changes in gliomas and metastases. Eur Radiol 2025; 35:580-591. [PMID: 39134744 PMCID: PMC11782315 DOI: 10.1007/s00330-024-11004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 07/20/2024] [Indexed: 02/01/2025]
Abstract
OBJECTIVES Differentiating true progression or recurrence (TP/TR) from therapy-related changes (TRC) is complex in brain tumours. Amide proton transfer-weighted (APT) imaging is a chemical exchange saturation transfer (CEST) MRI technique that may improve diagnostic accuracy during radiological follow-up. This systematic review and meta-analysis elucidated the level of evidence and details of state-of-the-art imaging for APT-CEST in glioma and brain metastasis surveillance. METHODS PubMed, EMBASE, Web of Science, and Cochrane Library were systematically searched for original articles about glioma and metastasis patients who received APT-CEST imaging for suspected TP/TR within 2 years after (chemo)radiotherapy completion. Modified Quality Assessment of Diagnostic Accuracy Studies-2 criteria were applied. A meta-analysis was performed to pool results and to compare subgroups. RESULTS Fifteen studies were included for a narrative synthesis, twelve of which (500 patients) were deemed sufficiently homogeneous for a meta-analysis. Magnetisation transfer ratio asymmetry performed well in gliomas (sensitivity 0.88 [0.82-0.92], specificity 0.84 [0.72-0.91]) but not in metastases (sensitivity 0.64 [0.38-0.84], specificity 0.56 [0.33-0.77]). APT-CEST combined with conventional/advanced MRI rendered 0.92 [0.86-0.96] and 0.88 [0.72-0.95] in gliomas. Tumour type, TR prevalence, sex, and acquisition protocol were sources of significant inter-study heterogeneity in sensitivity (I2 = 62.25%; p < 0.01) and specificity (I2 = 66.31%; p < 0.001). CONCLUSION A growing body of literature suggests that APT-CEST is a promising technique for improving the discrimination of TP/TR from TRC in gliomas, with limited data on metastases. CLINICAL RELEVANCE STATEMENT This meta-analysis identified a utility for APT-CEST imaging regarding the non-invasive discrimination of brain tumour progression from therapy-related changes, providing a critical evaluation of sequence parameters and cut-off values, which can be used to improve response assessment and patient outcome. KEY POINTS Therapy-related changes mimicking progression complicate brain tumour treatment. Amide proton imaging improves the non-invasive discrimination of glioma progression from therapy-related changes. Magnetisation transfer ratio asymmetry measurement seems not to have added value in brain metastases.
Collapse
Affiliation(s)
- Rajeev A Essed
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| | - Yeva Prysiazhniuk
- Charles University, The Second Faculty of Medicine, Department of Pathophysiology, Prague, Czech Republic
| | - Ivar J Wamelink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| | - Aynur Azizova
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands.
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, De Boelelaan 1117, 1081HV, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Hu LS, Smits M, Kaufmann TJ, Knutsson L, Rapalino O, Galldiks N, Sundgren PC, Cha S. Advanced Imaging in the Diagnosis and Response Assessment of High-Grade Glioma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2025; 224:e2330612. [PMID: 38477525 DOI: 10.2214/ajr.23.30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This AJR Expert Panel Narrative Review explores the current status of advanced MRI and PET techniques for the posttherapeutic response assessment of high-grade adult-type gliomas, focusing on ongoing clinical controversies in current practice. Discussed techniques that complement conventional MRI and aid the differentiation of recurrent tumor from posttreatment effects include DWI and diffusion-tensor imaging; perfusion MRI techniques including dynamic susceptibility contrast (DSC), dynamic contrast-enhanced, and arterial spin labeling MRI; MR spectroscopy (MRS) including assessment of 2-hydroxyglutarate (2HG) concentration; glucose- and amino acid (AA)-based PET; and amide proton transfer imaging. Updated criteria for the Response Assessment in Neuro-Oncology are presented. Given the abundant supporting clinical evidence, the panel supports a recommendation that routine response assessment after high-grade glioma treatment should include perfusion MRI, particularly given the development of a consensus recommended DSC-MRI protocol. Although published studies support 2HG MRS and AA PET, these techniques' widespread adoption will likely require increased availability (for 2HG MRS) or increased insurance funding in the United States (for AA PET). The review concludes with a series of consensus opinions from the author panel, centered on the clinical integration of the advanced imaging techniques into posttreatment surveillance protocols.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ
- Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | | | - Linda Knutsson
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
- Department of Neurology, Johns Hopkins University, Baltimore, MD
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Otto Rapalino
- Department of Radiology, Massachusetts General Hospital, Boston, MA
- Department of Radiology, Harvard Medical School, Boston, MA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Pia C Sundgren
- Institution of Clinical Sciences Lund/Radiology, Lund University, Lund, Sweden
- Lund Bioimaging Center, Lund University, Lund, Sweden
- Department of Medical Imaging and Function, Skane University Hospital, Lund, Sweden
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| |
Collapse
|
4
|
Cailleteau A, Ferrer L, Geffroy D, Fleury V, Lalire P, Doré M, Rousseau C. Are Dual-Phase 18F-Fluorodeoxyglucose PET-mpMRI Diagnostic Performances to Distinguish Brain Tumour Radionecrosis/Recurrence after Cranial Radiotherapy Usable in Routine? Cancers (Basel) 2024; 16:3216. [PMID: 39335186 PMCID: PMC11429908 DOI: 10.3390/cancers16183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Brain metastases or primary brain tumours had poor prognosis until the use of high dose radiotherapy. However, radionecrosis is a complex challenge in the post-radiotherapy management of these patients due to the difficulty of distinguishing this complication from local tumour recurrence. MRI alone has a variable specificity and sensibility, as does PET-CT imaging. We aimed to investigate the diagnostic performance of dual-phase 18F-FDG PET-mpMRI to distinguish cerebral radionecrosis from local tumour recurrence after cranial radiotherapy. A retrospective analysis was conducted between May 2021 and September 2022. Inclusion criteria encompassed patients with inconclusive MRI findings post-radiotherapy and history of cerebral radiotherapy for primary or metastatic brain lesions. Lesions are assessed qualitatively and semi-quantitatively. The gold standard to assess radionecrosis was histopathology or a composite criterion at three months. The study evaluated 24 lesions in 23 patients. Qualitative analysis yielded 85.7% sensitivity and 75% specificity. Semi-quantitative analysis, based on contralateral background noise, achieved 100% sensitivity and 50% specificity. Moreover, using contralateral frontal lobe background noise resulted in higher performances with 92% sensitivity and 63% specificity. Stratification by lesion type demonstrated 100% sensitivity and specificity rates for metastatic lesions. The diagnostic performance of dual-phase 18F-FDG PET-mpMRI shows promising results for metastatic lesions.
Collapse
Affiliation(s)
- Axel Cailleteau
- Department of Radiotherapy, ICO René Gauducheau, 44800 Saint Herblain, France
| | - Ludovic Ferrer
- Department of Nuclear Medicine, ICO René Gauducheau, 44800 Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, F-44000 Nantes, France
| | - Delphine Geffroy
- Department of Radiology, ICO René Gauducheau, 44800 Saint Herblain, France
| | - Vincent Fleury
- Department of Nuclear Medicine, ICO René Gauducheau, 44800 Saint Herblain, France
| | - Paul Lalire
- Department of Nuclear Medicine, ICO René Gauducheau, 44800 Saint Herblain, France
| | - Mélanie Doré
- Department of Radiotherapy, ICO René Gauducheau, 44800 Saint Herblain, France
| | - Caroline Rousseau
- Department of Nuclear Medicine, ICO René Gauducheau, 44800 Saint Herblain, France
- Nantes Université, Univ Angers, INSERM, CNRS, CRCI2NA, F-44000 Nantes, France
| |
Collapse
|
5
|
Deng HZ, Zhang HW, Huang B, Deng JH, Luo SP, Li WH, Lei Y, Liu XL, Lin F. Advances in diffuse glioma assessment: preoperative and postoperative applications of chemical exchange saturation transfer. Front Neurosci 2024; 18:1424316. [PMID: 39148521 PMCID: PMC11325484 DOI: 10.3389/fnins.2024.1424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) is a technique that uses specific off-resonance saturation pulses to pre-saturate targeted substances. This process influences the signal intensity of free water, thereby indirectly providing information about the pre-saturated substance. Among the clinical applications of CEST, Amide Proton Transfer (APT) is currently the most well-established. APT can be utilized for the preoperative grading of gliomas. Tumors with higher APTw signals generally indicate a higher likelihood of malignancy. In predicting preoperative molecular typing, APTw values are typically lower in tumors with favorable molecular phenotypes, such as isocitrate dehydrogenase (IDH) mutations, compared to IDH wild-type tumors. For differential diagnosis, the average APTw values of meningiomas are significantly lower than those of high-grade gliomas. Various APTw measurement indices assist in distinguishing central nervous system lesions with similar imaging features, such as progressive multifocal leukoencephalopathy, central nervous system lymphoma, solitary brain metastases, and glioblastoma. Regarding prognosis, APT effectively differentiates between tumor recurrence and treatment effects, and also possesses predictive capabilities for overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Hua-Zhen Deng
- Shantou University Medical College, Shantou City, China
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
6
|
Dagher R, Gad M, da Silva de Santana P, Sadeghi MA, Yewedalsew SF, Gujar SK, Yedavalli V, Köhler CA, Khan M, Tavora DGF, Kamson DO, Sair HI, Luna LP. Umbrella review and network meta-analysis of diagnostic imaging test accuracy studies in Differentiating between brain tumor progression versus pseudoprogression and radionecrosis. J Neurooncol 2024; 166:1-15. [PMID: 38212574 DOI: 10.1007/s11060-023-04528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
PURPOSE In this study we gathered and analyzed the available evidence regarding 17 different imaging modalities and performed network meta-analysis to find the most effective modality for the differentiation between brain tumor recurrence and post-treatment radiation effects. METHODS We conducted a comprehensive systematic search on PubMed and Embase. The quality of eligible studies was assessed using the Assessment of Multiple Systematic Reviews-2 (AMSTAR-2) instrument. For each meta-analysis, we recalculated the effect size, sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio from the individual study data provided in the original meta-analysis using a random-effects model. Imaging technique comparisons were then assessed using NMA. Ranking was assessed using the multidimensional scaling approach and by visually assessing surface under the cumulative ranking curves. RESULTS We identified 32 eligible studies. High confidence in the results was found in only one of them, with a substantial heterogeneity and small study effect in 21% and 9% of included meta-analysis respectively. Comparisons between MRS Cho/NAA, Cho/Cr, DWI, and DSC were most studied. Our analysis showed MRS (Cho/NAA) and 18F-DOPA PET displayed the highest sensitivity and negative likelihood ratios. 18-FET PET was ranked highest among the 17 studied techniques with statistical significance. APT MRI was the only non-nuclear imaging modality to rank higher than DSC, with statistical insignificance, however. CONCLUSION The evidence regarding which imaging modality is best for the differentiation between radiation necrosis and post-treatment radiation effects is still inconclusive. Using NMA, our analysis ranked FET PET to be the best for such a task based on the available evidence. APT MRI showed promising results as a non-nuclear alternative.
Collapse
Affiliation(s)
- Richard Dagher
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe Street Phipps B100F, Baltimore, MD, 21287, USA
| | - Mona Gad
- Diagnostic Radiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Mohammad Amin Sadeghi
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe Street Phipps B100F, Baltimore, MD, 21287, USA
| | | | - Sachin K Gujar
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe Street Phipps B100F, Baltimore, MD, 21287, USA
| | - Vivek Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe Street Phipps B100F, Baltimore, MD, 21287, USA
| | - Cristiano André Köhler
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Majid Khan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe Street Phipps B100F, Baltimore, MD, 21287, USA
| | | | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Haris I Sair
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe Street Phipps B100F, Baltimore, MD, 21287, USA
| | - Licia P Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, Johns Hopkins Hospital, 600 N Wolfe Street Phipps B100F, Baltimore, MD, 21287, USA.
| |
Collapse
|
7
|
Ohba S, Murayama K, Teranishi T, Kumon M, Nakae S, Yui M, Yamamoto K, Yamada S, Abe M, Hasegawa M, Hirose Y. Three-Dimensional Amide Proton Transfer-Weighted Imaging for Differentiating between Glioblastoma, IDH-Wildtype and Primary Central Nervous System Lymphoma. Cancers (Basel) 2023; 15:952. [PMID: 36765909 PMCID: PMC9913574 DOI: 10.3390/cancers15030952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Distinguishing primary central nervous system lymphoma (PCNSL) from glioblastoma, isocitrate dehydrogenase (IDH)-wildtype is sometimes hard. Because the role of operation on them varies, accurate preoperative diagnosis is crucial. In this study, we evaluated whether a specific kind of chemical exchange saturation transfer imaging, i.e., amide proton transfer-weighted (APTw) imaging, was useful to distinguish PCNSL from glioblastoma, IDH-wildtype. A total of 14 PCNSL and 27 glioblastoma, IDH-wildtype cases were evaluated. There was no significant difference in the mean APTw signal values between the two groups. However, the percentile values from the 1st percentile to the 20th percentile APTw signals and the width1-100 APTw signals significantly differed. The highest area under the curve was 0.796, which was obtained from the width1-100 APTw signal values. The sensitivity and specificity values were 64.3% and 88.9%, respectively. APTw imaging was useful to distinguish PCNSL from glioblastoma, IDH-wildtype. To avoid unnecessary aggressive surgical resection, APTw imaging is recommended for cases in which PCNSL is one of the differential diagnoses.
Collapse
Affiliation(s)
- Shigeo Ohba
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takao Teranishi
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masanobu Kumon
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Shunsuke Nakae
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Seiji Yamada
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masato Abe
- Department of Pathology, Fujita Health University School of Health Sciences, Toyoake 470-1192, Aichi, Japan
| | - Mitsuhiro Hasegawa
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|