1
|
Kwon HJ, Mun H, Oh JK, Choi GM, Yoo DY, Hwang IK, Kim DW, Moon SM. Neuroprotective Effects of Chaperonin Containing TCP1 Subunit 2 (CCT2) on Motor Neurons Following Oxidative or Ischemic Stress. Neurochem Res 2024; 50:42. [PMID: 39614031 DOI: 10.1007/s11064-024-04286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024]
Abstract
Chaperonin containing TCP1 (CCT) is an essential protein that controls proteostasis following spinal cord damage. In particular, CCT2 plays an important role in neuronal death in various neurological disorders; however, few studies have investigated the effects of CCT2 on ischemic damage in the spinal cord. In the present study, we synthesized a cell-permeable Tat-CCT2 fusion protein and observed its effects on H2O2-induced oxidative damage in NSC34 motoneuron-like cells and in the spinal cord after ischemic injury. Tat-CCT2, but not its control protein CCTs, was delivered into NSC34 cells in a concentration- and incubation time-dependent manner, and a clear cytosolic location of the delivered protein was observed. In addition, the delivered protein gradually degraded, and nearly control levels were observed 24 h after Tat-CCT2 treatment. Tat-CCT2 treatment significantly ameliorated 200 µM H2O2-induced neuronal damage in NSC34 cells at 8.0 µM protein treatment. Additionally, Tat-CCT2 significantly ameliorated H2O2-induced reactive oxygen species formation and DNA fragmentation. In the rabbit spinal cord, Tat-CCT2 was efficiently delivered into the spinal cord 4 h after 0.125 mg/kg protein treatment. In addition, treatment with Tat-CCT2 significantly improved the neurological scores based on the Tarlov criteria 24 and 72 h after ischemia/reperfusion. Moreover, the number of surviving neurons in the ventral horn of the spinal cord was significantly increased in the Tat-CCT2-treated group 3 and 7 days after ischemia compared to vehicle-treated group. Treatment with Tat-CCT2 alleviated the ischemia-induced oxidative stress and ferroptosis-related factor (malondialdehyde, 8-iso-prostaglandin F2α, and high mobility group box 1) and pro-inflammatory cytokine (interleukin-1β, interleukin-6, and tumor necrosis factor-α) releases in the ventral horn of the spinal cord 8 and 24 h after ischemia/reperfusion. In addition, Tat-CCT2 treatment significantly ameliorated ischemia-induced microglial activation in the ventral horn of spinal cord 24 h after reperfusion. These results suggest that Tat-CCT2 mitigates ischemia-induced neuronal damage in the spinal cord.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyunwoong Mun
- Department of Neurosurgery, College of Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang, 14068, South Korea
| | - Jae Keun Oh
- Department of Neurosurgery, College of Medicine, Hallym University Sacred Heart Hospital, Hallym University, Anyang, 14068, South Korea
| | - Goang-Min Choi
- Department of Thoracic and Cardiovascular Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea.
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea.
| |
Collapse
|
2
|
Mao Z, Gu Y, Tao G, Dai Q, Xu Y, Fei Z. The co-expression of Crohn's disease and colon cancer network was analyzed by bioinformatics-CXCL1 tumour microenvironment and prognosis-related gene CXCL1. Discov Oncol 2024; 15:557. [PMID: 39402186 PMCID: PMC11479648 DOI: 10.1007/s12672-024-01423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/17/2024] Open
Abstract
PURPOSE This study aimed to investigate the molecular links and mechanisms between Crohn's disease (CD) and colorectal cancer (CRC). METHODS This study used the Gene Expression Omnibus (GEO) database to identify Differentially expressed genes (DEGs) in CD (GSE112366) and CRC (GSE110224), analyzed by 'edgeR' and 'limma'. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes explored DEG functions, and the Search Tool for the Retrieval of Interacting Genes (STRING) informed the protein-protein interaction network construction visualized in Cytoscape (version 3.7.2). Cyto-Hubba identified key genes, whose biomarker potential for CD and CRC was evaluated. RESULTS The study discovered 61 DEGs, with 44 up- and 17 down-regulated, linked to immune responses and signaling pathways. CXCL1, highly expressed in colon cancer, correlated with better prognosis and lower staging. It also showed associations with immune infiltration and checkpoint molecules, suggesting a role in cancer progression and retreat. CONCLUSION CXCL1 may play a role in the development of colorectal cancer from inflammatory bowel disease.
Collapse
Affiliation(s)
- Zijuan Mao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuyang Gu
- Department of Oncology, The First Affiliated Hospital of Jiaxing University, No. 1882, Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Ganxue Tao
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Dai
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 108 Wansong Road, Rui'an, 325200, China
| | - Yangjie Xu
- Department of Oncology, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China.
| | - Zhenghua Fei
- Department of Radiotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Chen X, Ma C, Li Y, Liang Y, Chen T, Han D, Luo D, Zhang N, Zhao W, Wang L, Chen B, Guo H, Yang Q. Trim21-mediated CCT2 ubiquitination suppresses malignant progression and promotes CD4 +T cell activation in breast cancer. Cell Death Dis 2024; 15:542. [PMID: 39079960 PMCID: PMC11289294 DOI: 10.1038/s41419-024-06944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Breast cancer remains a significant global health challenge, and its mechanisms of progression and metastasis are still not fully understood. In this study, analysis of TCGA and GEO datasets revealed a significant increase in CCT2 expression in breast cancer tissues, which was associated with poor prognosis in breast cancer patients. Functional analysis revealed that CCT2 promoted breast cancer growth and metastasis through activation of the JAK2/STAT3 signaling pathway. Additionally, the E3 ubiquitin ligase Trim21 facilitated CCT2 ubiquitination and degradation, significantly reversing the protumor effects of CCT2. Most interestingly, we discovered that exosomal CCT2 derived from breast cancer cells suppressed the activation and proinflammatory cytokine secretion of CD4+ T cell. Mechanistically, exosomal CCT2 constrained Ca2+-NFAT1 signaling, thereby reducing CD40L expression on CD4+ T cell. These findings highlight CCT2 upregulation as a potential driver of breast cancer progression and immune evasion. Our study provides new insights into the molecular mechanisms underlying breast cancer progression, suggesting that CCT2 is a promising therapeutic target and prognostic predictor for breast cancer.
Collapse
Affiliation(s)
- Xi Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chenao Ma
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hong Guo
- Shandong Desheng Bioengineering Company Limited, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Zhang Y, Yu W, Zhou S, Xiao J, Zhang X, Yang H, Zhang J. Finding key genes (UBE2T, KIF4A, CDCA3, and CDCA5) co-expressed in hepatitis, cirrhosis and hepatocellular carcinoma based on multiple bioinformatics techniques. BMC Gastroenterol 2024; 24:205. [PMID: 38890649 PMCID: PMC11184838 DOI: 10.1186/s12876-024-03288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Hepatitis B virus (HBV) is one of the major causes of liver cirrhosis (LC) and HCC. Therefore, the discovery of common markers for hepatitis B or LC and HCC is crucial for the prevention of HCC. METHODS Expressed genes for to chronic active hepaititis B (CAH-B), LC and HCC were obtained from the GEO and TCGA databases, and co-expressed genes were screened using Protein-protein interaction (PPI) networks, least absolute shrinkage and selection operator (LASSO), random forest (RF) and support vector machine - recursive feature elimination (SVM-RFE). The prognostic value of genes was assessed using Kaplan-Meier (KM) survival curves. Columnar line plots, calibration curves and receiver operating characteristic (ROC) curves of individual genes were used for evaluation. Validation was performed using GEO datasets. The association of these key genes with HCC clinical features was explored using the UALCAN database ( https://ualcan.path.uab.edu/index.html ). RESULTS Based on WGCNA analysis and TCGA database, the co-expressed genes (565) were screened. Moreover, the five algorithms of MCODE (ClusteringCoefficient, MCC, Degree, MNC, and DMNC) was used to select one of the most important and most closely linked clusters (the top 50 genes ranked). Using, LASSO regression model, RF model and SVM-RFE model, four key genes (UBE2T, KIF4A, CDCA3, and CDCA5) were identified for subsequent research analysis. These 4 genes were highly expressed and associated with poor prognosis and clinical features in HCC patients. CONCLUSION These four key genes (UBE2T, KIF4A, CDCA3, and CDCA5) may be common biomarkers for CAH-B and HCC or LC and HCC, promising to advance our understanding of the molecular basis of CAH-B/LC/HCC progression.
Collapse
Affiliation(s)
- Yingai Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Haikou, Hainan, 570208, China
- School of Life Sciences, Hainan University, No.58 Renmin Road, Haikou, Hainan, 570228, China
| | - Weiling Yu
- Department of Chemotherapy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Haikou, Hainan, 570208, China
| | - Shuai Zhou
- Hepatobiliary surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Haikou, Hainan, 570208, China
| | - Jingchuan Xiao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Haikou, Hainan, 570208, China
| | - Xiaoyu Zhang
- Hepatobiliary surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Haikou, Hainan, 570208, China
| | - Haoliang Yang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Haikou, Hainan, 570208, China
| | - Jianquan Zhang
- Hepatobiliary surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No.43 Renmin Road, Haikou, Hainan, 570208, China.
| |
Collapse
|
5
|
Zargar S, Wani TA. Food Toxicity of Mycotoxin Citrinin and Molecular Mechanisms of Its Potential Toxicity Effects through the Implicated Targets Predicted by Computer-Aided Multidimensional Data Analysis. Life (Basel) 2023; 13:life13040880. [PMID: 37109409 PMCID: PMC10142723 DOI: 10.3390/life13040880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The mycotoxin citrinin, which can contaminate food, is a major global concern. Citrinin is regarded as an inevitable pollutant in foods and feed since fungi are widely present in the environment. To identify contentious toxicity and lessen its severity by understanding the targets of citrinin in the human body and the impacted biosynthetic pathways, we analyzed the production of citrinin from Aspergillus flavus and Penicillium notatum and used a thorough bioinformatics analysis to characterize the toxicity and predict genes and protein targets for it. The predicted median fatal dosage (LD50) for citrinin was 105 mg/kg weight, and it belonged to toxicity class 3 (toxic if swallowed). Citrinin was found to be well absorbed by human intestinal epithelium and was a Pgp nonsubstrate (permeability glycoprotein), which means that once it is absorbed, it cannot be pumped out, hence leading to bioconcentration or biomagnification in the human body. The main targets of toxicity were casp3, TNF, IL10, IL1B, BAG3, CCNB1, CCNE1, and CDC25A, and the biological pathways implicated were signal transduction involved in DNA damage checkpoints, cellular and chemical responses to oxidative stress, DNA damage response signal transduction by P53, stress-activated protein kinase signaling cascade, netrin–UNC5B signaling, PTEN gene regulation, and immune response. Citrinin was linked to neutrophilia, squamous cell carcinoma, Fanconi anemia, leukemia, hepatoblastoma, and fatty liver diseases. The transcription factors E2F1, HSF1, SIRT1, RELA, NFKB, JUN, and MYC were found to be responsible. When data mining was performed on citrinin targets, the top five functional descriptions were a cell’s response to an organic cyclic compound, the netrin–UNC5B signaling pathway, lipids and atherosclerosis, thyroid cancer, and controlling the transcription of the PTEN gene.
Collapse
|
6
|
Lv W, Shi L, Pan J, Wang S. Comprehensive prognostic and immunological analysis of CCT2 in pan-cancer. Front Oncol 2022; 12:986990. [PMID: 36119498 PMCID: PMC9476648 DOI: 10.3389/fonc.2022.986990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
CCT2 acts as a molecular chaperone protein that assists in the proper folding of proteins, thus ensuring a dynamic balance of cellular homeostasis. Despite increasing evidence supporting the important role of CCT2 in the tumorigenesis of certain cancers, few articles that provide a systematic pan-cancer analysis of CCT2 have been published. Hence, to evaluate the expression status and prognostic significance of CCT2 in pan-cancers, an analysis of the relationship between CCT2 and different tumor immune cell infiltrations was conducted using datasets from the Cancer Genome Atlas, Cancer Cell Lineage Encyclopedia, and so on. In most cancers, CCT2 expression was high and was associated with poor prognosis. Moreover, CCT2 gene expression was negatively correlated with infiltration of most immune cells in 10 cancer types, and CCT2 expression was related to tumor mutation burden and microsatellite instability. The role that CCT2 plays in tumorigenesis and tumor immunity suggests that it can serve as a prognostic marker in many cancers.
Collapse
Affiliation(s)
- Wenming Lv
- Department of Neurology, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lin Shi
- Department of Hematology, Peking University International Hospital, Beijing, China
| | - Jiebing Pan
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Shengbao Wang
- Emergency Center of the Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|