1
|
Liu T, Xu J, Zhang QX, Huang YJ, Wang W, Fu Z. Inhibiting the expression of spindle appendix cooled coil protein 1 can suppress tumor cell growth and metastasis and is associated with cancer immune cells in esophageal squamous cell carcinoma. PLoS One 2024; 19:e0302312. [PMID: 39196978 PMCID: PMC11356440 DOI: 10.1371/journal.pone.0302312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/01/2024] [Indexed: 08/30/2024] Open
Abstract
Inhibiting the expression of spindle appendix cooled coil protein 1 (SPDL1) can slow down disease progression and is related to poor prognosis in patients with esophageal cancer. However, the specific roles and molecular mechanisms of SPDL1 in esophageal squamous cell carcinoma (ESCC) have not been explored yet. The current study aimed to investigate the expression levels of SPDL1 in ESCC via transcriptome analysis using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Moreover, the biological roles, molecular mechanisms, and protein networks involved in SPDL1 were identified using machine learning and bioinformatics. The cell counting kit-8 assay, EdU staining, and transwell assay were used to investigate the effects of inhibiting SPDL1 expression on ESCC cell proliferation, migration, and invasion. Finally, the correlation between the SPDL1 expression and cancer immune infiltrating cells was evaluated by analyzing data from the TCGA database. Results showed that SPDL1 was overexpressed in the ESCC tissues. The SPDL1 expression was related to age in patients with ESCC. The SPDL1 co-expressed genes included those involved in cell division, cell cycle, DNA repair and replication, cell aging, and other processes. The high-risk scores of SPDL1-related long non-coding RNAs were significantly correlated with overall survival and cancer progression in patients with ESCC (P < 0.05). Inhibiting the SPDL1 expression was effective in suppressing the proliferation, migration, and invasion of ESCC TE-1 cells (P < 0.05). The overexpression of SPDL1 was positively correlated with the levels of Th2 and T-helper cells, and was negatively correlated with the levels of plasmacytoid dendritic cells and mast cells. In conclusion, SPDL1 was overexpressed in ESCC and was associated with immune cells. Further, inhibiting the SPDL1 expression could effectively slow down cancer cell growth and migration. SPDL1 is a promising biomarker for treating patients with ESCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Juan Xu
- Operating Room, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Qun-Xian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yan-Jiao Huang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Wei Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Zhu Fu
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
2
|
Wu X, Zeng M, Wei Y, Lu R, Huang Z, Huang L, Huang Y, Lu Y, Li W, Wei H, Pu J. METTL3 and METTL14-mediated N 6-methyladenosine modification of SREBF2-AS1 facilitates hepatocellular carcinoma progression and sorafenib resistance through DNA demethylation of SREBF2. Sci Rep 2024; 14:6155. [PMID: 38486042 PMCID: PMC10940719 DOI: 10.1038/s41598-024-55932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
As the most prevalent epitranscriptomic modification, N6-methyladenosine (m6A) shows important roles in a variety of diseases through regulating the processing, stability and translation of target RNAs. However, the potential contributions of m6A to RNA functions are unclear. Here, we identified a functional and prognosis-related m6A-modified RNA SREBF2-AS1 in hepatocellular carcinoma (HCC). The expression of SREBF2-AS1 and SREBF2 in HCC tissues and cells was measured by RT-qPCR. m6A modification level of SREBF2-AS1 was measured by methylated RNA immunoprecipitation assay. The roles of SREBF2-AS1 in HCC progression and sorafenib resistance were investigated by proliferation, apoptosis, migration, and cell viability assays. The regulatory mechanisms of SREBF2-AS1 on SREBF2 were investigated by Chromatin isolation by RNA purification, RNA immunoprecipitation, CUT&RUN, and bisulfite DNA sequencing assays. Our findings showed that the expression of SREBF2-AS1 was increased in HCC tissues and cells, and positively correlated with poor survival of HCC patients. m6A modification level of SREBF2-AS1 was also increased in HCC and positively correlated with poor prognosis of HCC patients. METTL3 and METTL14-induced m6A modification upregulated SREBF2-AS1 expression through increasing SREBF2-AS1 transcript stability. Functional assays showed that only m6A-modified, but not non-modified SREBF2-AS1 promoted HCC progression and sorafenib resistance. Mechanistic investigations revealed that m6A-modified SREBF2-AS1 bound and recruited m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1 to SREBF2 promoter, leading to DNA demethylation at SREBF2 promoter and the upregulation of SREBF2 transcription. Functional rescue assays showed that SREBF2 was the critical mediator of the oncogenic roles of SREBF2-AS1 in HCC. Together, this study showed that m6A-modified SREBF2-AS1 exerted oncogenic roles in HCC through inducing DNA demethylation and transcriptional activation of SREBF2, and suggested m6A-modified SREBF2-AS1 as a prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yuan Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Huamei Wei
- Clinical Pathological Diagnosis and Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China.
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, Baise, China.
| |
Collapse
|
3
|
Wei H, Yang J, Lu R, Huang Y, Huang Z, Huang L, Zeng M, Wei Y, Xu Z, Li W, Pu J. m 6A modification of AC026356.1 facilitates hepatocellular carcinoma progression by regulating the IGF2BP1-IL11 axis. Sci Rep 2023; 13:19124. [PMID: 37926706 PMCID: PMC10625930 DOI: 10.1038/s41598-023-45449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common RNA modification in eukaryotic RNAs. Although the important roles of m6A in RNA fate have been revealed, the potential contribution of m6A to RNA function in various diseases, including hepatocellular carcinoma (HCC), is still unclear. In this study, we identified a novel m6A-modified RNA AC026356.1. We found that AC026356.1 was increased in HCC tissues and cell lines. High expression of AC026356.1 was correlated with poor survival of HCC patients. m6A modification level of AC026356.1 was also increased in HCC and more significantly correlated with poor survival of HCC patients. Functional assays showed that m6A-modified AC026356.1 promoted HCC cellular proliferation, migration, and liver metastasis. Gene set enrichment analysis showed that AC026356.1 activated IL11/STAT3 signaling. Mechanistic investigation showed that m6A-modified AC026356.1 bound to IGF2BP1. The interaction between m6A-modified AC026356.1 and IGF2BP1 promoted the binding of IL11 mRNA to IGF2BP1, leading to increased IL11 mRNA stability and IL11 secretion. Functional rescue assays showed that depletion of IL11 reversed the oncogenic roles of AC026356.1. These findings revealed the potential influences of m6A modification on RNA biological functions and suggested that targeting m6A modification may be a novel strategy for HCC treatment.
Collapse
Affiliation(s)
- Huamei Wei
- Clinical Pathological Diagnosis and Research Centre, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jinhun Yang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshan Two Road, Baise, 533000, China.
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, Baise, China.
| |
Collapse
|
4
|
Tan C, Huang Y, Huang Z, Ning Y, Huang L, Wu X, Lu Y, Wei H, Pu J. N 6-Methyladenosine-Modified ATP8B1-AS1 Exerts Oncogenic Roles in Hepatocellular Carcinoma via Epigenetically Activating MYC. J Hepatocell Carcinoma 2023; 10:1479-1495. [PMID: 37701563 PMCID: PMC10493143 DOI: 10.2147/jhc.s415318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/06/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) modification has shown critical roles in regulating mRNA fate. Non-coding RNAs also have important roles in various diseases, including hepatocellular carcinoma (HCC). However, the potential influences of m6A modification on non-coding RNAs are still unclear. In this study, we identified a novel m6A-modified ATP8B1-AS1 and aimed to investigate the effects of m6A on the expression and role of ATP8B1-AS1 in HCC. Methods qPCR was performed to measure the expression of related genes. The correlation between gene expression and prognosis was analyzed using public database. m6A modification level was measured using MeRIP and single-base elongation- and ligation-based qPCR amplification method. The roles of ATP8B1-AS1 in HCC were investigated using in vitro and in vivo functional assays. The mechanisms underlying the roles of ATP8B1-AS1 were investigated by ChIRP and ChIP assays. Results ATP8B1-AS1 is highly expressed in HCC tissues and cell lines. High expression of ATP8B1-AS1 is correlated with poor overall survival of HCC patients. ATP8B1-AS1 is m6A modified and the 792 site of ATP8B1-AS1 is identified as an m6A modification site. m6A modification increases the stability of ATP8B1-AS1 transcript. m6A modification level of ATP8B1-AS1 is increased in HCC tissues and cell lines, and correlated with poor overall survival of HCC patients. ATP8B1-AS1 promotes HCC cell proliferation, migration, and invasion, which were abolished by the mutation of m6A-modified 792 site. Mechanistic investigation revealed that m6A-modified ATP8B1-AS1 interacts with and recruits m6A reader YTHDC1 and histone demethylase KDM3B to MYC promoter region, leading to the reduction of H3K9me2 level at MYC promoter region and activation of MYC transcription. Functional rescue assays showed that depletion of MYC largely abolished the oncogenic roles of ATP8B1-AS1. Conclusion m6A modification level of ATP8B1-AS1 is increased and correlated with poor prognosis in HCC. m6A-modified ATP8B1-AS1 exerts oncogenic roles in HCC via epigenetically activating MYC expression.
Collapse
Affiliation(s)
- Chuan Tan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuanjia Ning
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| |
Collapse
|
5
|
Zhu L, Zhang XP, Xu S, Hu MG, Zhao ZM, Zhao GD, Xiao ZH, Liu R. Identification of a CD4+ conventional T cells-related lncRNAs signature associated with hepatocellular carcinoma prognosis, therapy, and tumor microenvironment. Front Immunol 2023; 13:1111246. [PMID: 36700197 PMCID: PMC9868629 DOI: 10.3389/fimmu.2022.1111246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and CD4+ T lymphocytes can inhibit hepatocarcinogenesis and mediate tumor regression. However, few studies have focused on the prognostic power of CD4+ Tconv-related lncRNAs in HCC patients. Method We obtained data from TCGA and GEO databases and identified CD4+Tconv-related lncRNAs in HCC. The risk score was constructed using lasso regression and the model was validated using two validation cohorts. The RS was also assessed in different clinical subgroups, and a nomogram was established to further predict the patients' outcomes. Furthermore, we estimated the immune cell infiltration and cancer-associated fibroblasts (CAFs) through TIMER databases and assessed the role of RS in immune checkpoint inhibitors response. Results We constructed a CD4+ Tconv-related lncRNAs risk score, including six lncRNAs (AC012073.1, AL031985.3, LINC01060, MKLN1-AS, MSC-AS1, and TMCC1-AS1), and the RS had good predictive ability in validation cohorts and most clinical subgroups. The RS and the T stage were included in the nomogram with optimum prediction and the model had comparable OS prediction power compared to the AJCC. Patients in the high-risk group had a poor immune response phenotype, with high infiltrations of macrophages, CAFs, and low infiltrations of NK cells. Immunotherapy and chemotherapy response analysis indicated that low-risk group patients had good reactions to immune checkpoint inhibitors. Conclusion We constructed and validated a novel CD4+ Tconv-related lncRNAs RS, with the potential predictive value of HCC patients' survival and immunotherapy response.
Collapse
Affiliation(s)
- Lin Zhu
- Medical School of Chinese PLA, Beijing, China,Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China,The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xiu-Ping Zhang
- Medical School of Chinese PLA, Beijing, China,Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Shuai Xu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming-Gen Hu
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Zhi-Ming Zhao
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Guo-Dong Zhao
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Zhao-Hui Xiao
- Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Rong Liu
- Medical School of Chinese PLA, Beijing, China,Faculty of Hepato-Biliary-Pancreatic Surgery, the First Medical Centre, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China,The First Clinical Medical School, Lanzhou University, Lanzhou, China,*Correspondence: Rong Liu,
| |
Collapse
|
6
|
Zhang Q, Zhang Y, Chen H, Sun LN, Zhang B, Yue DS, Wang CL, Zhang ZF. METTL3-induced DLGAP1-AS2 promotes non-small cell lung cancer tumorigenesis through m 6A/c-Myc-dependent aerobic glycolysis. Cell Cycle 2022; 21:2602-2614. [PMID: 35972892 PMCID: PMC9704390 DOI: 10.1080/15384101.2022.2105885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
The critical roles of N6-methyladenosine (m6A) modification have been demonstrated by more and more evidence. However, the cross talk of m6A and long noncoding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) tumorigenesis is still unclear. Here, this work focused on the functions and molecular mechanism of m6A-modified lncRNA DLGAP1 antisense RNA 2 (DLGAP1-AS2) in NSCLC. Microarray analysis found that lncRNA DLGAP1-AS2 is upregulated in NSCLC cells. Clinical data showed that DLGAP1-AS2 high-expression was correlated with advanced pathological stage and poor prognosis. Functionally, DLGAP1-AS2 overexpression promoted the aerobic glycolysis and DLGAP1-AS2 knockdown suppressed the tumor growth of NSCLC cells. Mechanistically, m6A methyltransferase METTL3 enhanced the stability of DLGAP1-AS2 via m6A site binding. Moreover, DLGAP1-AS2 interacted with YTHDF1 to enhance the stability of c-Myc mRNA through DLGAP1-AS2/YTHDF1/m6A/c-Myc mRNA. In conclusion, our work indicates the functions of m6A-modified DLGAP1-AS2 in the NSCLC aerobic glycolysis, disclosing a potential m6A-dependent manner for NSCLC treatment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Hui Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lei-Na Sun
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Dong-Sheng Yue
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|