1
|
Salvestrini V, Lastrucci A, Banini M, Loi M, Carnevale MG, Olmetto E, Garlatti P, Simontacchi G, Francolini G, Bonomo P, Wandael Y, Desideri I, Ricci R, Giansanti D, Scotti V, Livi L. Recent Advances and Current Challenges in Stereotactic Body Radiotherapy for Ultra-Central Lung Tumors. Cancers (Basel) 2024; 16:4135. [PMID: 39766035 PMCID: PMC11674056 DOI: 10.3390/cancers16244135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Stereotactic body radiotherapy has been established as a viable treatment option for inoperable early-stage non-small cell lung cancer or secondary lesions mainly in oligoprogressive/oligometastatic scenarios. Treating lesions in the so-called "no flight zone" has always been challenging and conflicting data never cleared how to safely treat these lesions. This is truer considering ultra-central lesions, i.e., directly abutting or whose PTV is overlapping critical mediastinal organs. While historical retrospective data are abundant but mostly heterogenous in terms of the definition of ultra-central lesions, dosing regimens and outcomes, prospective data remain scarce, even though recently published studies have given new encouraging results for such delicate treatment scenarios. For this reason, we aimed to review and summarize current knowledge on stereotactic radiation treatment for ultra-central thoracic lesions, highlighting the most recent advances and the messages that can be taken from them. Lastly, we propose a workflow of the necessary steps to identify and treat such patients, therefore helping in elucidating the advantages and caveats of such treatment options.
Collapse
Affiliation(s)
- Viola Salvestrini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Andrea Lastrucci
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | - Marco Banini
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Mauro Loi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Maria Grazia Carnevale
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Emanuela Olmetto
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Pietro Garlatti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Gabriele Simontacchi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Giulio Francolini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Pierluigi Bonomo
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Yannick Wandael
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | - Isacco Desideri
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| | - Renzo Ricci
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (Y.W.); (R.R.)
| | | | - Vieri Scotti
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
| | - Lorenzo Livi
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (V.S.); (A.L.); (M.L.); (E.O.); (P.G.); (G.S.); (G.F.); (P.B.); (V.S.); (L.L.)
- Department of Experimental and Clinical Biomedical Sciences “M Serio”, University of Florence, 50134 Florence, Italy; (M.G.C.); (I.D.)
| |
Collapse
|
2
|
Ahmadsei M, Jegarajah V, Dal Bello R, Christ SM, Mayinger MM, Sabrina Stark L, Willmann J, Vogelius IR, Balermpas P, Andratschke N, Tanadini-Lang S, Guckenberger M. Dosimetric Analysis of Proximal Bronchial Tree Subsegments to Assess The Risk of Severe Toxicity After Stereotactic Body Radiation Therapy of Ultra-central Lung Tumors. Clin Transl Radiat Oncol 2024; 45:100707. [PMID: 38125648 PMCID: PMC10731610 DOI: 10.1016/j.ctro.2023.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
•Stereotactic body radiation therapy (SBRT) for ultra-central lung tumors is associated with high toxicity rates.•To evaluate differences in radiosensitivity within the proximal bronchial tree (PBT), the PBT was sub-segmented into seven anatomical sections.•A risk-adapted SBRT regimen of EQD2_10 = 54.4 Gy in 8 or 10 fractions results in excellent local control and low rates of severe toxicity.•Data from a recent meta-analysis, the NORDIC Hilus trial and dosimetric data from this study were combined to create a NTCP model.•A dose threshold of EQD2_3 = 100 Gy to the PBT or any of its subsegments is expected to result in low rates of severe bronchial toxicity.
Collapse
Affiliation(s)
- Maiwand Ahmadsei
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Vinojaa Jegarajah
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sebastian M. Christ
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael M. Mayinger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luisa Sabrina Stark
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Ivan R. Vogelius
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
La Rosa A, Mittauer KE, Bassiri N, Rzepczynski AE, Chuong MD, Yarlagadda S, Kutuk T, McAllister NC, Hall MD, Gutierrez AN, Tolakanahalli R, Mehta MP, Kotecha R. Accelerated Hypofractionated Magnetic Resonance Guided Adaptive Radiation Therapy for Ultracentral Lung Tumors. Tomography 2024; 10:169-180. [PMID: 38250959 PMCID: PMC10820032 DOI: 10.3390/tomography10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Radiotherapy for ultracentral lung tumors represents a treatment challenge, considering the high rates of high-grade treatment-related toxicities with stereotactic body radiation therapy (SBRT) or hypofractionated schedules. Accelerated hypofractionated magnetic resonance-guided adaptive radiation therapy (MRgART) emerged as a potential game-changer for tumors in these challenging locations, in close proximity to central organs at risk, such as the trachea, proximal bronchial tree, and esophagus. In this series, 13 consecutive patients, predominantly male (n = 9), with a median age of 71 (range (R): 46-85), underwent 195 MRgART fractions (all 60 Gy in 15 fractions) to metastatic (n = 12) or primary ultra-central lung tumors (n = 1). The median gross tumor volumes (GTVs) and planning target volumes (PTVs) were 20.72 cc (R: 0.54-121.65 cc) and 61.53 cc (R: 3.87-211.81 cc), respectively. The median beam-on time per fraction was 14 min. Adapted treatment plans were generated for all fractions, and indications included GTV/PTV undercoverage, OARs exceeding tolerance doses, or both indications in 46%, 18%, and 36% of fractions, respectively. Eight patients received concurrent systemic therapies, including immunotherapy (four), chemotherapy (two), and targeted therapy (two). The crude in-field loco-regional control rate was 92.3%. No CTCAE grade 3+ toxicities were observed. Our results offer promising insights, suggesting that MRgART has the potential to mitigate toxicities, enhance treatment precision, and improve overall patient care in the context of ultracentral lung tumors.
Collapse
Affiliation(s)
- Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Kathryn E. Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Amy E. Rzepczynski
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Nicole C. McAllister
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
| | - Matthew D. Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Alonso N. Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA; (K.E.M.); (N.B.); (A.E.R.); (M.D.C.); (S.Y.); (T.K.); (N.C.M.); (M.D.H.); (A.N.G.); (R.T.); (M.P.M.)
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Ge X, Yang M, Li T, Liu T, Gao X, Qiu Q, Yin Y. Comparative analysis of dose calculation algorithms for CyberKnife-based stereotactic radiotherapy in lung cancer. Front Oncol 2023; 13:1215976. [PMID: 37849803 PMCID: PMC10577380 DOI: 10.3389/fonc.2023.1215976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose The accuracy of dose calculation is the prerequisite for CyberKnife (CK) to implement precise stereotactic body radiotherapy (SBRT). In this study, CK-MLC treatment planning for early-stage non-small cell lung cancer (NSCLC) were compared using finite-size pencil beam (FSPB) algorithm, FSPB with lateral scaling option (FSPB_LS) and Monte Carlo (MC) algorithms, respectively. We concentrated on the enhancement of accuracy with the FSPB_LS algorithm over the conventional FSPB algorithm and the dose consistency with the MC algorithm. Methods In this study, 54 cases of NSCLC were subdivided into central lung cancer (CLC, n=26) and ultra-central lung cancer (UCLC, n=28). For each patient, we used the FSPB algorithm to generate a treatment plan. Then the dose was recalculated using FSPB_LS and MC dose algorithms based on the plans computed using the FSPB algorithm. The resultant plans were assessed by calculating the mean value of pertinent comparative parameters, including PTV prescription isodose, conformity index (CI), homogeneity index (HI), and dose-volume statistics of organs at risk (OARs). Results In this study, most dose parameters of PTV and OARs demonstrated a trend of MC > FSPB_LS > FSPB. The FSPB_LS algorithm aligns better with the dose parameters of the target compared to the MC algorithm, which is particularly evident in UCLC. However, the FSPB algorithm significantly underestimated the does of the target. Regarding the OARs in CLC, differences in dose parameters were observed between FSPB and FSPB_LS for V10 of the contralateral lung, as well as between FSPB and MC for mean dose (Dmean) of the contralateral lung and maximum dose (Dmax) of the aorta, exhibiting statistical differences. There were no statistically significant differences observed between FSPB_LS and MC for the OARs. However, the average dose deviation between FSPB_LS and MC algorithms for OARs ranged from 2.79% to 11.93%. No significant dose differences were observed among the three algorithms in UCLC. Conclusion For CLC, the FSPB_LS algorithm exhibited good consistency with the MC algorithm in PTV and demonstrated a significant improvement in accuracy when compared to the traditional FSPB algorithm. However, the FSPB_LS algorithm and the MC algorithm showed a significant dose deviation in OARs of CLC. In the case of UCLC, FSPB_LS showed better consistency with the MC algorithm than observed in CLC. Notwithstanding, UCLC's OARs were highly sensitive to radiation dose and could result in potentially serious adverse reactions. Consequently, it is advisable to use the MC algorithm for dose calculation in both CLC and UCLC, while the application of FSPB_LS algorithm should be carefully considered.
Collapse
Affiliation(s)
- Xuanchu Ge
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mingshan Yang
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tengxiang Li
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tonghai Liu
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiangyu Gao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingtao Qiu
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Bourbonne V, Thureau S, Pradier O, Antoni D, Lucia F. Stereotactic radiotherapy for ultracentral lung tumours. Cancer Radiother 2023; 27:659-665. [PMID: 37516640 DOI: 10.1016/j.canrad.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/31/2023]
Abstract
Ultracentral (UC) lung lesions are generally defined by the presence of the tumour or the Planning Target Volume (PTV) abutting proximal bronchial tree (PBT) or the esophagus. Initial reports rose awareness regarding the potential toxicity of stereotactic body radiotherapy (SBRT) when delivered to UC lesions. Major concerns include necrosis, stenosis, and bleeding of the PBT. Technological improvements now enable the delivery of more accurate treatments, possibly redefining the historical "no-fly zone". In this review, studies focusing on the treatment of UC lesions with SBRT are presented. The narrow therapeutic window requires a multidisciplinary approach.
Collapse
Affiliation(s)
- V Bourbonne
- Radiation Oncology Department, centre hospitalier universitaire de Brest, Brest, France; Inserm, LaTim UMR 1101, université de Bretagne occidentale, Brest, France.
| | - S Thureau
- Radiation Oncology Department, centre Henri-Becquerel, Rouen, France; QuantIf-Litis EA4108, université de Rouen, Rouen, France
| | - O Pradier
- Radiation Oncology Department, centre hospitalier universitaire de Brest, Brest, France; Inserm, LaTim UMR 1101, université de Bretagne occidentale, Brest, France
| | - D Antoni
- Radiation Oncology Department, institut de cancérologie Strasbourg Europe, Strasbourg, France
| | - F Lucia
- Radiation Oncology Department, centre hospitalier universitaire de Brest, Brest, France; Inserm, LaTim UMR 1101, université de Bretagne occidentale, Brest, France
| |
Collapse
|