1
|
Zhang J, Zhang X, Zhong Y, Wang J, Zhong C, Xiao M, Chen Y, Zhang H. PET radiomics for histologic subtype classification of non-small cell lung cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2025; 52:2212-2224. [PMID: 39794511 DOI: 10.1007/s00259-025-07069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
PURPOSE To systematically review the literature and perform a meta-analysis of PET radiomics for histologic subtype classification in non-small cell lung cancer (NSCLC). METHODS PubMed, Embase, Scopus, and Web of Science databases were systematically searched in English on human subjects for studies on distinguishing adenocarcinoma (ADC) from squamous cell carcinoma (SCC) using PET radiomics published from inception until November 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the Radiomics Quality Score (RQS) were utilized to assess the methodological quality of the included studies. The area under the receiver operating characteristic curves (AUC) was pooled to estimate predictive performance. An overall effect size was estimated using a random-effects model. Statistical heterogeneity was evaluated by the I2 value. Subgroup analyses were conducted to explore sources of heterogeneity. RESULTS Twelve studies were included in the analysis, yielding a pooled AUC of 0.92 (95% confidence interval [CI]: 0.89-0.94). Despite this promising result, the studies showed limitations in both study design and methodological quality, as evidenced by a median RQS of 11/36. A significant degree of heterogeneity was observed among the studies, with an I2 of 92.20% (95% CI: 89.01-95.39) for sensitivity and 89.29% (95% CI: 84.48-94.10) for specificity. CONCLUSIONS This meta-analysis highlights the potential utility of PET radiomics in distinguishing ADC from SCC. However, the observed high heterogeneity indicates substantial methodological variability across the included studies. Future research should focus on standardization, transparency, and multicenter collaborations to improve the reliability and clinical applicability of PET radiomics for histologic subtype classification in NSCLC.
Collapse
Affiliation(s)
- Jucheng Zhang
- Department of Clinical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chao Zhong
- Department of Radiology, Ningbo Yinzhou NO.2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Meiling Xiao
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yuhan Chen
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
2
|
Liu Q, Ren Y, Huang Y, Xie R, Li Y, Dong Z, Zhang X. Development and validation of a probability-assessment nomogram for non-suicidal self-injury in hospitalized adolescents and young adults with mental disorders. Sci Rep 2025; 15:15142. [PMID: 40307292 PMCID: PMC12043840 DOI: 10.1038/s41598-025-00142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/25/2025] [Indexed: 05/02/2025] Open
Abstract
Assessing non-suicidal self-injury (NSSI) in adolescents and young adults is a critical yet challenging aspect of psychiatric evaluations for hospitalized patients. This study aimed to develop a detective model for probability of NSSI in adolescents and young adults utilizing a retrospective cross-sectional analysis. Data from 658 hospitalized adolescents and young adults, including demographic characteristics, hormone levels, and violence risk factors, were collected. Age, history of suicide attempts, gender, and psychiatric diagnosis were identified as key detectors through Boruta and LASSO machine learning algorithms, leading to the construction of a nomogram. Model performance was evaluated based on discrimination, calibration, and decision curve analysis (DCA). The model achieved the area under the receiver operating characteristic curve (AUC) values of 0.803 (training set; 95% CI 0.763-0.843) and 0.745 (validation set; 95% CI 0.676-0.814). Calibration plots demonstrated strong alignment between predicted and actual outcomes. The Hosmer-Lemeshow test indicated good model fit, while DCA revealed clinically relevant threshold ranges for the training and validation sets, highlighting the model's potential to inform clinical decision-making. This detective model can support the rational allocation of medical resources and facilitate the early detection and intervention of NSSI behaviors in hospitalized adolescents and young adults.
Collapse
Affiliation(s)
- Qi Liu
- West China School of Nursing, Sichuan University/Department of Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjuan Ren
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Huang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyi Xie
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinyuan Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaoxia Zhang
- West China School of Nursing, Sichuan University, Chengdu, China.
- Division of Head and Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Andrijanova A, Bugovecka L, Isajevs S, Erts D, Malinovskis U, Liepins A. Machine Learning for Lung Cancer Subtype Classification: Combining Clinical, Histopathological, and Biophysical Features. Diagnostics (Basel) 2025; 15:127. [PMID: 39857011 PMCID: PMC11764335 DOI: 10.3390/diagnostics15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite advances in diagnostic techniques, accurate classification of lung cancer subtypes remains crucial for treatment planning. Traditional methods like genomic studies face limitations such as high cost and complexity. This study investigates whether integrating atomic force microscopy (AFM) measurements with conventional clinical and histopathological data can improve lung cancer subtype classification. Methods: We developed and analyzed a novel dataset combining clinical, histopathological, and AFM-derived biophysical characteristics from 37 lung cancer patients. Various machine learning techniques were evaluated, with a focus on Bayesian Networks due to their ability to handle complex data with missing values. Leave-One-Out Cross-Validation was employed to assess model performance. Results: The integration of biophysical features improved classification accuracy from 86.49% to 89.19% using a data-driven Bayesian Network model, though this improvement was not statistically significant (p = 1.0). Four key features were identified as highly predictive: sex, vascular invasion, perineural invasion, and ALK mutation. A simplified model using only these features achieved identical performance with significantly reduced complexity (BIC 51.931 vs. 268.586). Conclusions: While AFM-derived measurements showed promise for enhancing lung cancer subtype classification, larger datasets are needed to fully validate their impact. Our findings demonstrate the feasibility of incorporating biophysical measurements into cancer classification frameworks and identify the most predictive features for accurate diagnosis. Further research with expanded datasets is needed to validate these findings.
Collapse
Affiliation(s)
| | - Lasma Bugovecka
- Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (L.B.); (D.E.); (U.M.)
| | - Sergejs Isajevs
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia;
| | - Donats Erts
- Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (L.B.); (D.E.); (U.M.)
| | - Uldis Malinovskis
- Institute of Chemical Physics, Faculty of Science and Technology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (L.B.); (D.E.); (U.M.)
| | | |
Collapse
|
4
|
Mao F, Shen M, Zhang Y, Chen H, Cong Y, Zhu H, Tang C, Zhang S, Wang Y. Development and validation of a nomogram for predicting histologic subtypes of subpleural non-small cell lung cancer using ultrasound parameters and clinical data. Front Oncol 2024; 14:1477450. [PMID: 39582539 PMCID: PMC11581939 DOI: 10.3389/fonc.2024.1477450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Aims To develop and validate an individualized nomogram for differentiating the histologic subtypes (adenocarcinoma and squamous cell carcinoma) of subpleural non-small cell lung cancer (NSCLC) based on ultrasound parameters and clinical data. Methods This study was conducted retrospectively between March 2018 and December 2019. Patients were randomly assigned to a development cohort (DC, n=179) and a validation cohort (VC, n=77). A total of 7 clinical parameters and 16 ultrasound parameters were collected. Least absolute shrinkage and selection operator regression analysis was employed to identify the most significant predictors utilizing a 10-fold cross-validation. The multivariate logistic regression model was applied to investigate the relevant factors. An individualized nomogram was then developed. Receiver operating characteristic (ROC) curve, calibration plot and decision curve analysis (DCA) were applied for model validation in both DC and VC. Results Following the final regression analysis, gender, serum carcinoembryonic antigen, lesion size and perfusion defect in contrast-enhanced ultrasound were entered into the nomogram. The model showed moderate predictive ability, with an area under the ROC curve of 0.867 for DC and 0.838 for VC. The calibration curves of the model showed good agreement between actual and predicted probabilities. The ROC and DCA curves demonstrated that the nomogram exhibited a good predictive performance. Conclusion We developed a nomogram that can predict the histologic subtypes of subpleural NSCLC. Both internal and external validation revealed optimal discrimination and calibration, indicating that the nomogram may have clinical utility. This model has the potential to assist clinicians in making treatment recommendations.
Collapse
Affiliation(s)
- Feng Mao
- Department of Medical Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengjun Shen
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongwei Chen
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Cong
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huiming Zhu
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunhong Tang
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengmin Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yin Wang
- Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Shi L, Zhao J, Wei Z, Wu H, Sheng M. Radiomics in distinguishing between lung adenocarcinoma and lung squamous cell carcinoma: a systematic review and meta-analysis. Front Oncol 2024; 14:1381217. [PMID: 39381037 PMCID: PMC11458374 DOI: 10.3389/fonc.2024.1381217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Objectives The aim of this study was to systematically review the studies on radiomics models in distinguishing between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and evaluate the classification performance of radiomics models using images from various imaging techniques. Materials and methods PubMed, Embase and Web of Science Core Collection were utilized to search for radiomics studies that differentiate between LUAD and LUSC. The assessment of the quality of studies included utilized the improved Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS). Meta-analysis was conducted to assess the classification performance of radiomics models using various imaging techniques. Results The qualitative analysis included 40 studies, while the quantitative synthesis included 21 studies. Median RQS for 40 studies was 12 (range -5~19). Sixteen studies were deemed to have a low risk of bias and low concerns regarding applicability. The radiomics model based on CT images had a pooled sensitivity of 0.78 (95%CI: 0.71~0.83), specificity of 0.85 (95%CI:0.73~0.92), and the area under summary receiver operating characteristic curve (SROC-AUC) of 0.86 (95%CI:0.82~0.89). As for PET images, the pooled sensitivity was 0.80 (95%CI: 0.61~0.91), specificity was 0.77 (95%CI: 0.60~0.88), and the SROC-AUC was 0.85 (95%CI: 0.82~0.88). PET/CT images had a pooled sensitivity of 0.87 (95%CI: 0.72~0.94), specificity of 0.88 (95%CI: 0.80~0.93), and an SROC-AUC of 0.93 (95%CI: 0.91~0.95). MRI images had a pooled sensitivity of 0.73 (95%CI: 0.61~0.82), specificity of 0.80 (95%CI: 0.65~0.90), and an SROC-AUC of 0.79 (95%CI: 0.75~0.82). Conclusion Radiomics models demonstrate potential in distinguishing between LUAD and LUSC. Nevertheless, it is crucial to conduct a well-designed and powered prospective radiomics studies to establish their credibility in clinical application. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=412851, identifier CRD42023412851.
Collapse
Affiliation(s)
- Lili Shi
- Medical School, Nantong University, Nantong, China
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhichao Wei
- Medical School, Nantong University, Nantong, China
| | - Huiqun Wu
- Medical School, Nantong University, Nantong, China
| | - Meihong Sheng
- Department of Radiology, The Second Affiliated Hospital of Nantong University and Nantong First People’s Hospital, Nantong, China
| |
Collapse
|
6
|
Wang Y, Zhao H, Fu P, Tian L, Su Y, Lyu Z, Gu W, Wang Y, Liu S, Wang X, Zheng H, Du J, Zhang R. Preoperative prediction of lymph node metastasis in colorectal cancer using 18F-FDG PET/CT peritumoral radiomics analysis. Med Phys 2024; 51:5214-5225. [PMID: 38801340 DOI: 10.1002/mp.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Radiomics has been used in the diagnosis of tumor lymph node metastasis (LNM). However, to date, most studies have been based on intratumoral radiomics. Few studies have focused on the use of 18F-fluorodeoxyglucose positron emission computed tomography (18F-FDG PET/CT) peritumoral radiomics for the diagnosis of LNM in colorectal cancer (CRC). PURPOSE Determining the value of radiomics features extracted from 18F-FDG PET/CT images of the peritumoral region in predicting LNM in patients with CRC. METHODS The clinical data and preoperative 18F-FDG PET/CT images of 244 CRC patients were retrospectively analyzed. Intratumoral and peritumoral radiomics features were screened using the mutual information method, and least absolute shrinkage and selection operator regression. Based on the selected radiomics features, a radiomics score (Rad-score) was calculated, and independent risk factors obtained from univariate and multivariate logistic regression analyses were used to construct clinical and combined (Radiomics + Clinical) models. The performance of these models was evaluated using the DeLong test, while their clinical utility was assessed by decision curve analysis. Finally, a nomogram was constructed to visualize the predictive model. RESULTS The most optimal set of features retained by the feature filtering process were all peritumoral radiomic features. Carcinoembryonic antigen levels, PET/CT-reported lymph node status and Rad-score were found to be independent risk factors for LNM. All three LNM risk assessment models exhibited good predictive performance, with the combined model showing the best classification results, with areas under the curve of 0.85 and 0.76 in the training and validation groups, respectively. The DeLong test revealed that the performance of the combined model was superior to that of the clinical and radiomics models in both the training and validation groups, although this difference was only statistically significant in the training group. DCA indicated that the combined model displayed better clinical utility. CONCLUSIONS 18F-FDG PET/CT peritumoral radiomics is uniquely suited to predict the presence of LNM in patients with CRC. In particular, the predictive efficacy of LNM for precision therapy and individualized patient management can be improved by using a combination of clinical risk factors.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yexin Su
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhehao Lyu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Han Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingjing Du
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Zhang
- Department of Magnetic Resonance, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China
| |
Collapse
|
7
|
Tas MO, Yavuz HS. Enhancing Lung Cancer Survival Prediction: 3D CNN Analysis of CT Images Using Novel GTV1-SliceNum Feature and PEN-BCE Loss Function. Diagnostics (Basel) 2024; 14:1309. [PMID: 38928724 PMCID: PMC11202780 DOI: 10.3390/diagnostics14121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Lung cancer is a prevalent malignancy associated with a high mortality rate, with a 5-year relative survival rate of 23%. Traditional survival analysis methods, reliant on clinician judgment, may lack accuracy due to their subjective nature. Consequently, there is growing interest in leveraging AI-based systems for survival analysis using clinical data and medical imaging. The purpose of this study is to improve survival classification for lung cancer patients by utilizing a 3D-CNN architecture (ResNet-34) applied to CT images from the NSCLC-Radiomics dataset. Through comprehensive ablation studies, we evaluate the effectiveness of different features and methodologies in classification performance. Key contributions include the introduction of a novel feature (GTV1-SliceNum), the proposal of a novel loss function (PEN-BCE) accounting for false negatives and false positives, and the showcasing of their efficacy in classification. Experimental work demonstrates results surpassing those of the existing literature, achieving a classification accuracy of 0.7434 and an ROC-AUC of 0.7768. The conclusions of this research indicate that the AI-driven approach significantly improves survival prediction for lung cancer patients, highlighting its potential for enhancing personalized treatment strategies and prognostic modeling.
Collapse
Affiliation(s)
- Muhammed Oguz Tas
- Electrical and Electronics Engineering Department, Eskisehir Osmangazi University, Eskisehir 26480, Turkey;
| | | |
Collapse
|
8
|
Kuang B, Zhang J, Zhang M, Xia H, Qiang G, Zhang J. Advancing NSCLC pathological subtype prediction with interpretable machine learning: a comprehensive radiomics-based approach. Front Med (Lausanne) 2024; 11:1413990. [PMID: 38841579 PMCID: PMC11150591 DOI: 10.3389/fmed.2024.1413990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE This research aims to develop and assess the performance of interpretable machine learning models for diagnosing three histological subtypes of non-small cell lung cancer (NSCLC) utilizing CT imaging data. METHODS A retrospective cohort of 317 patients diagnosed with NSCLC was included in the study. These individuals were randomly segregated into two groups: a training set comprising 222 patients and a validation set with 95 patients, adhering to a 7:3 ratio. A comprehensive extraction yielded 1,834 radiomic features. For feature selection, statistical methodologies such as the Mann-Whitney U test, Spearman's rank correlation, and one-way logistic regression were employed. To address data imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was utilized. The study designed three distinct models to predict adenocarcinoma (ADC), squamous cell carcinoma (SCC), and large cell carcinoma (LCC). Six different classifiers, namely Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, eXtreme Gradient Boosting (XGB), and LightGBM, were deployed for model training. Model performance was gauged through accuracy metrics and the area under the receiver operating characteristic (ROC) curves (AUC). To interpret the diagnostic process, the Shapley Additive Explanations (SHAP) approach was applied. RESULTS For the ADC, SCC, and LCC groups, 9, 12, and 8 key radiomic features were selected, respectively. In terms of model performance, the XGB model demonstrated superior performance in predicting SCC and LCC, with AUC values of 0.789 and 0.848, respectively. For ADC prediction, the Random Forest model excelled, showcasing an AUC of 0.748. CONCLUSION The constructed machine learning models, leveraging CT imaging, exhibited robust predictive capabilities for SCC, LCC, and ADC subtypes of NSCLC. These interpretable models serve as substantial support for clinical decision-making processes.
Collapse
Affiliation(s)
- Bingling Kuang
- Department of Pathology, Affiliated Cancer Hospital and Institution of Guangzhou Medical University, Guangzhou, China
- Nanshan College, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingxuan Zhang
- Nanshan College, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingqi Zhang
- The Second Clinical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haoming Xia
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institution of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Yuan L, An L, Zhu Y, Duan C, Kong W, Jiang P, Yu QQ. Machine Learning in Diagnosis and Prognosis of Lung Cancer by PET-CT. Cancer Manag Res 2024; 16:361-375. [PMID: 38699652 PMCID: PMC11063459 DOI: 10.2147/cmar.s451871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As a disease with high morbidity and high mortality, lung cancer has seriously harmed people's health. Therefore, early diagnosis and treatment are more important. PET/CT is usually used to obtain the early diagnosis, staging, and curative effect evaluation of tumors, especially lung cancer, due to the heterogeneity of tumors and the differences in artificial image interpretation and other reasons, it also fails to entirely reflect the real situation of tumors. Artificial intelligence (AI) has been applied to all aspects of life. Machine learning (ML) is one of the important ways to realize AI. With the help of the ML method used by PET/CT imaging technology, there are many studies in the diagnosis and treatment of lung cancer. This article summarizes the application progress of ML based on PET/CT in lung cancer, in order to better serve the clinical. In this study, we searched PubMed using machine learning, lung cancer, and PET/CT as keywords to find relevant articles in the past 5 years or more. We found that PET/CT-based ML approaches have achieved significant results in the detection, delineation, classification of pathology, molecular subtyping, staging, and response assessment with survival and prognosis of lung cancer, which can provide clinicians a powerful tool to support and assist in critical daily clinical decisions. However, ML has some shortcomings such as slightly poor repeatability and reliability.
Collapse
Affiliation(s)
- Lili Yuan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Lin An
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Yandong Zhu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Chongling Duan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Weixiang Kong
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Qing-Qing Yu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| |
Collapse
|
10
|
Zhao H, Su Y, Wang Y, Lyu Z, Xu P, Gu W, Tian L, Fu P. Using tumor habitat-derived radiomic analysis during pretreatment 18F-FDG PET for predicting KRAS/NRAS/BRAF mutations in colorectal cancer. Cancer Imaging 2024; 24:26. [PMID: 38342905 PMCID: PMC10860234 DOI: 10.1186/s40644-024-00670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/29/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND To investigate the association between Kirsten rat sarcoma viral oncogene homolog (KRAS) / neuroblastoma rat sarcoma viral oncogene homolog (NRAS) /v-raf murine sarcoma viral oncogene homolog B (BRAF) mutations and the tumor habitat-derived radiomic features obtained during pretreatment 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in patients with colorectal cancer (CRC). METHODS We retrospectively enrolled 62 patients with CRC who had undergone 18F-FDG PET/computed tomography from January 2017 to July 2022 before the initiation of therapy. The patients were randomly split into training and validation cohorts with a ratio of 6:4. The whole tumor region radiomic features, habitat-derived radiomic features, and metabolic parameters were extracted from 18F-FDG PET images. After reducing the feature dimension and selecting meaningful features, we constructed a hierarchical model of KRAS/NRAS/BRAF mutations by using the support vector machine. The convergence of the model was evaluated by using learning curve, and its performance was assessed based on the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis. The SHapley Additive exPlanation was used to interpret the contributions of various features to predictions of the model. RESULTS The model constructed by using habitat-derived radiomic features had adequate predictive power with respect to KRAS/NRAS/BRAF mutations, with an AUC of 0.759 (95% CI: 0.585-0.909) on the training cohort and that of 0.701 (95% CI: 0.468-0.916) on the validation cohort. The model exhibited good convergence, suitable calibration, and clinical application value. The results of the SHapley Additive explanation showed that the peritumoral habitat and a high_metabolism habitat had the greatest impact on predictions of the model. No meaningful whole tumor region radiomic features or metabolic parameters were retained during feature selection. CONCLUSION The habitat-derived radiomic features were found to be helpful in stratifying the status of KRAS/NRAS/BRAF in CRC patients. The approach proposed here has significant implications for adjuvant treatment decisions in patients with CRC, and needs to be further validated on a larger prospective cohort.
Collapse
Affiliation(s)
- Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yexin Su
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhehao Lyu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Ibaraki, Japan
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
11
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
12
|
Tang X, Wu F, Chen X, Ye S, Ding Z. Current status and prospect of PET-related imaging radiomics in lung cancer. Front Oncol 2023; 13:1297674. [PMID: 38164195 PMCID: PMC10757959 DOI: 10.3389/fonc.2023.1297674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Lung cancer is highly aggressive, which has a high mortality rate. Major types encompass lung adenocarcinoma, lung squamous cell carcinoma, lung adenosquamous carcinoma, small cell carcinoma, and large cell carcinoma. Lung adenocarcinoma and lung squamous cell carcinoma together account for more than 80% of cases. Diverse subtypes demand distinct treatment approaches. The application of precision medicine necessitates prompt and accurate evaluation of treatment effectiveness, contributing to the improvement of treatment strategies and outcomes. Medical imaging is crucial in the diagnosis and management of lung cancer, with techniques such as fluoroscopy, computed radiography (CR), digital radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)/CT, and PET/MRI being essential tools. The surge of radiomics in recent times offers fresh promise for cancer diagnosis and treatment. In particular, PET/CT and PET/MRI radiomics, extensively studied in lung cancer research, have made advancements in diagnosing the disease, evaluating metastasis, predicting molecular subtypes, and forecasting patient prognosis. While conventional imaging methods continue to play a primary role in diagnosis and assessment, PET/CT and PET/MRI radiomics simultaneously provide detailed morphological and functional information. This has significant clinical potential value, offering advantages for lung cancer diagnosis and treatment. Hence, this manuscript provides a review of the latest developments in PET-related radiomics for lung cancer.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Fan Wu
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiaofen Chen
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Shengli Ye
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
13
|
Lin J, Yu Y, Zhang X, Wang Z, Li S. Classification of Histological Types and Stages in Non-small Cell Lung Cancer Using Radiomic Features Based on CT Images. J Digit Imaging 2023; 36:1029-1037. [PMID: 36828962 PMCID: PMC10287608 DOI: 10.1007/s10278-023-00792-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Non-invasive diagnostic method based on radiomic features in patients with non-small cell lung cancer (NSCLC) has attracted attention. This study aimed to develop a CT image-based model for both histological typing and clinical staging of patients with NSCLC. A total of 309 NSCLC patients with 537 CT series from The Cancer Imaging Archive (TCIA) database were included in this study. All patients were randomly divided into the training set (247 patients, 425 CT series) and testing set (62 patients, 112 CT series). A total of 107 radiomic features were extracted. Four classifiers including random forest, XGBoost, support vector machine, and logistic regression were used to construct the classification model. The classification model had two output layers: histological type (adenocarcinoma, squamous cell carcinoma, and large cell) and clinical stage (I, II, and III) of NSCLC patients. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) with 95% confidence interval (CI) were utilized to evaluate the performance of the model. Seven features were selected for inclusion in the classification model. The random forest model had the best classification ability compared with other classifiers. The AUC of the RF model for histological typing and clinical staging of NSCLC patients in the testing set was 0.700 (95% CI, 0.641-0.759) and 0.881 (95% CI, 0.842-0.920), respectively. The CT image-based radiomic feature model had good classification ability for both histological typing and clinical staging of patients with NSCLC.
Collapse
Affiliation(s)
- Jing Lin
- Department of Medical Imaging, Shanghai Electric Power Hospital, Changning District, No. 937 Yan'an West Road, Shanghai, 20050, China.
| | - Yunjie Yu
- Department of Medical Imaging, Shanghai Electric Power Hospital, Changning District, No. 937 Yan'an West Road, Shanghai, 20050, China
| | - Xianlong Zhang
- Department of Medical Imaging, Shanghai Electric Power Hospital, Changning District, No. 937 Yan'an West Road, Shanghai, 20050, China
| | - Zhenglei Wang
- Department of Medical Imaging, Shanghai Electric Power Hospital, Changning District, No. 937 Yan'an West Road, Shanghai, 20050, China
| | - Shujuan Li
- Department of Medical Imaging, Shanghai Electric Power Hospital, Changning District, No. 937 Yan'an West Road, Shanghai, 20050, China
| |
Collapse
|
14
|
Hu Q, Li K, Yang C, Wang Y, Huang R, Gu M, Xiao Y, Huang Y, Chen L. The role of artificial intelligence based on PET/CT radiomics in NSCLC: Disease management, opportunities, and challenges. Front Oncol 2023; 13:1133164. [PMID: 36959810 PMCID: PMC10028142 DOI: 10.3389/fonc.2023.1133164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Objectives Lung cancer has been widely characterized through radiomics and artificial intelligence (AI). This review aims to summarize the published studies of AI based on positron emission tomography/computed tomography (PET/CT) radiomics in non-small-cell lung cancer (NSCLC). Materials and methods A comprehensive search of literature published between 2012 and 2022 was conducted on the PubMed database. There were no language or publication status restrictions on the search. About 127 articles in the search results were screened and gradually excluded according to the exclusion criteria. Finally, this review included 39 articles for analysis. Results Classification is conducted according to purposes and several studies were identified at each stage of disease:1) Cancer detection (n=8), 2) histology and stage of cancer (n=11), 3) metastases (n=6), 4) genotype (n=6), 5) treatment outcome and survival (n=8). There is a wide range of heterogeneity among studies due to differences in patient sources, evaluation criteria and workflow of radiomics. On the whole, most models show diagnostic performance comparable to or even better than experts, and the common problems are repeatability and clinical transformability. Conclusion AI-based PET/CT Radiomics play potential roles in NSCLC clinical management. However, there is still a long way to go before being translated into clinical application. Large-scale, multi-center, prospective research is the direction of future efforts, while we need to face the risk of repeatability of radiomics features and the limitation of access to large databases.
Collapse
Affiliation(s)
- Qiuyuan Hu
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Conghui Yang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yue Wang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Rong Huang
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Mingqiu Gu
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yuqiang Xiao
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Key Laboratory of Lung Cancer of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
- *Correspondence: Long Chen, ; Yunchao Huang,
| | - Long Chen
- Department of positron emission tomography/computed tomography (PET/CT) Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, Yunnan, China
- *Correspondence: Long Chen, ; Yunchao Huang,
| |
Collapse
|
15
|
Qiao H, Ding Z, Zhu Y, Wei Y, Xiao B, Zhao Y, Feng Q. Quantitative Analysis of TP53-Related Lung Cancer Based on Radiomics. Int J Gen Med 2022; 15:8481-8489. [PMID: 36510487 PMCID: PMC9739966 DOI: 10.2147/ijgm.s392404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Background The role of TP53 mutations in the diagnosis and treatment of lung cancer has attracted increasing attention from experts worldwide. This study aimed to explore the expression of TP53 gene in lung cancer and its correlation with radiomics quantitative features. Methods A total of 93 cases of lung cancer confirmed by pathology were selected, including 44 cases with TP53 mutations and 49 cases with TP53 wild-type. ITK-SNAP software was used to segment the pulmonary nodules, AK software was used to extract radiomic features, and a model was established to predict the type of TP53 gene mutation in lung cancer lesions. Results A total of 852 features were extracted, and 10 features remained after feature selection. The accuracy, areas under the curve, specificity, sensitivity, positive predictive value, and negative predictive value of the logistic regression model were 0.80, 0.86, 0.89, 0.74, 0.90, and 0.71, respectively. Conclusion TP53 gene mutations are correlated with radiomic features in lung cancer, which may have application value for TP53 therapy in the future.
Collapse
Affiliation(s)
- Hongyu Qiao
- Zhejiang Rongjun Hospital, Jiaxing, People’s Republic of China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Youcai Zhu
- Zhejiang Rongjun Hospital, Jiaxing, People’s Republic of China
| | - Yuguo Wei
- GE Healthcare Life Sciences, Hangzhou, People’s Republic of China
| | - Baochen Xiao
- Zhejiang Rongjun Hospital, Jiaxing, People’s Republic of China
| | - Yongzhen Zhao
- Zhejiang Rongjun Hospital, Jiaxing, People’s Republic of China
| | - Qi Feng
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China,Correspondence: Qi Feng, Tel +86-13588764520, Email
| |
Collapse
|
16
|
A nomogram model based on MRI and radiomic features developed and validated for the evaluation of lymph node metastasis in patients with rectal cancer. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:4103-4114. [PMID: 36102961 DOI: 10.1007/s00261-022-03672-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE The aim of this study was to develop and validate a nomogram model to evaluate lymph node metastasis (LNM) in patients with rectal cancer (RC). METHODS A total of 162 patients with RC were included in the study. The MRI reported model, the Radscore model, and the Complex model were constructed using the logistics regression (LR) algorithm. The DeLong test and decision curve analysis (DCA) were used to compare the prediction performance and clinical utility of these models. The nomogram model was constructed to visualize the prediction results of the best model. Model performance was evaluated in the training and validation groups, and the calibration curve and Hosmer-Lemeshow goodness of fit test were used to evaluate the calibration. RESULT All three models constructed by the LR algorithm were good at identifying LNM. The DeLong test and the DCA results showed that the Complex model outperformed the MRI reported model and the Radscore model in relation to their predictive performance and clinical utility. The nomogram of the Complex model had an area under the curve (AUC) of 0.902 (95% confidence interval (CI) 0.848-0.957) in the training group and an AUC of 0.891 (95% CI 0.799-0.983) in the validation group. Meanwhile, the nomogram showed good calibration. CONCLUSION The nomogram model constructed based on T2WI radiomics and MRI reported had good diagnostic efficacies for LNM in patients with RC, and provided a new auxiliary method for accurate and individualized clinical management.
Collapse
|