1
|
Liu B, Sun Y, Wang W, Ren J, Wang D. BHLHE40-mediated transcriptional activation of GRIN2D in gastric cancer is involved in metabolic reprogramming. Funct Integr Genomics 2024; 24:214. [PMID: 39546079 DOI: 10.1007/s10142-024-01495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Gastric cancer (GC) is the third leading cause of death in developed countries. The reprogramming of energy metabolism represents a hallmark of cancer, particularly amplified dependence on aerobic glycolysis. Here, we aimed to illustrate the functional role of glutamate ionotropic receptor N-methyl-D-aspartate type subunit 2D (GRIN2D) in the regulation of glycolysis in GC and the mechanisms involved. Differentially expressed genes were analyzed using the GEO and GEPIA databases, followed by prognostic value prediction using the Kaplan-Meier Plotter database. The effect of GRIN2D knockdown on the malignant behavior and glycolysis of GC cells was explored. GRIN2D expression was upregulated in GC cells and promoted the malignant behavior of GC cells by activating glycolysis. Class E basic helix-loop-helix protein 40 (BHLHE40) was overexpressed in GC cells and mediated transcriptional activation of GRIN2D. The anti-tumor effects of BHLHE40 knockdown on GC cells in vitro and in vivo were reversed by GRIN2D overexpression. Knockdown of GRIN2D or BHLHE40 downregulated the expression of mRNA of electron transport chain subunits and phosphorylation of p38 MARK and inhibited calcium efflux in GC cells. Overexpression of GRIN2D promoted calcium efflux, phosphorylation of p38 MARK protein, and proliferation of GES1 cells. Altogether, the findings derived from this study suggest that BHLHE40 knockdown suppresses the growth, mobility, and glycolysis of GC cells by inhibiting GRIN2D transcription and disrupting the BHLHE40/GRIN2D axis may be an attractive therapeutic strategy for GC.
Collapse
Affiliation(s)
- Bin Liu
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China
| | - Yuanlin Sun
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, 270000, P.R. China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Guangling District, Yangzhou, Jiangsu, 225001, P.R. China.
| |
Collapse
|
2
|
Le M, Qing M, Zeng X, Cheng S. m6A-YTHDF1 Mediated Regulation of GRIN2D in Bladder Cancer Progression and Aerobic Glycolysis. Biochem Genet 2024:10.1007/s10528-024-10875-6. [PMID: 38951355 DOI: 10.1007/s10528-024-10875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
The modification of N6-methyladenosine (m6A), primarily orchestrated by the reader protein YTHDF1, is a pivotal element in the post-transcriptional regulation of genes. While its role in various biological processes is well-documented, the specific impact of m6A-YTHDF1 on the regulation of GRIN2D, a gene implicated in cancer biology, particularly in the context of bladder cancer, is not thoroughly understood. Utilizing a series of bioinformatics analyses and experimental approaches, including cell culture, transfection, RT-qPCR, and western blotting, we investigated the m6A modification landscape in bladder cancer cells. The relationship between m6A-YTHDF1 and GRIN2D expression was examined, followed by functional assays to assess their roles in cancer progression and glycolytic activity. Our analysis identified a significant upregulation of m6A modification in bladder cancer tissues. YTHDF1 was found to regulate GRIN2D expression positively. Functionally, GRIN2D was implicated in promoting bladder cancer cell proliferation and enhancing aerobic glycolysis. Inhibition of the m6A-YTHDF1-GRIN2D axis resulted in the suppression of cancer progression and metabolic alterations. Through this research, we have elucidated the significant influence of the m6A-YTHDF1 axis on the modulation of GRIN2D expression, which in turn markedly impacts the progression of bladder cancer and its metabolic pathways, particularly aerobic glycolysis. Our findings uncover critical molecular dynamics within bladder cancer cells, offering a deeper understanding of its pathophysiology. Furthermore, the insights gained from this study underscore the potential of targeting the m6A-YTHDF1-GRIN2D pathway for the development of innovative therapeutic strategies in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Meixian Le
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meiying Qing
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiangju Zeng
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shunhua Cheng
- Department of Urology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Liu Y, Liu S, Yan L, Zhang Q, Liu W, Huang X, Liu S. Contribution of m5C RNA Modification-Related Genes to Prognosis and Immunotherapy Prediction in Patients with Ovarian Cancer. Mediators Inflamm 2023; 2023:1400267. [PMID: 38022687 PMCID: PMC10661868 DOI: 10.1155/2023/1400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background 5-Methylcytosine (m5C) RNA modification is closely implicated in the occurrence of a variety of cancers. Here, we established a novel prognostic signature for ovarian cancer (OC) patients based on m5C RNA modification-related genes and explored the correlation between these genes with the tumor immune microenvironment. Methods Methylated-RNA immunoprecipitation sequencing helped us to identify candidate genes related to m5C RNA modification at first. Based on TCGA database, we screened the differentially expressed candidate genes related to the prognosis and constructed a prognostic model using LASSO Cox regression analyses. Notably, the accuracy of the model was evaluated by Kaplan-Meier analysis and receiver operator characteristic curves. Independent prognostic risk factors were investigated by Cox proportional hazard model. Furthermore, we also analyzed the biological functions and pathways involved in the signature. Finally, the immune response of the model was visualized in great detail. Results Totally, 2,493 candidate genes proved to be involved in m5C modification of RNA for OC. We developed a signature with prognostic value consisting of six m5C RNA modification-related genes. Specially, samples have been split into two cohorts with low- and high-risk scores according to the model, in which the low-risk OC patients exhibited dramatically better overall survival time than those with high-risk scores. Besides, not only was this model a prognostic factor independent of other clinical characteristics but it predicted the intensity of the immune response in OC. Significantly, the accuracy and availability of the signature were verified by ICGC database. Conclusions Our study bridged the gap between m5C RNA modification and the prognosis of OC and was expected to provide an effective breakthrough for immunotherapy in OC patients.
Collapse
Affiliation(s)
- Yibin Liu
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Shouze Liu
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Lu Yan
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Qianqian Zhang
- Department of Gynecology and Obstetrics, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Wenhua Liu
- Department of Pain, Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, Hebei 061001, China
| | - Xianghua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050011, China
| | - Shikai Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| |
Collapse
|
4
|
Liu S, Hu Q, Xie Z, Chen S, Li Y, Quan N, Huang K, Li R, Fang L. An endoplasmic reticulum stress-related signature could robustly predict prognosis and closely associate with response to immunotherapy in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:15589-15608. [PMID: 37653101 PMCID: PMC10620278 DOI: 10.1007/s00432-023-05312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors. Endoplasmic reticulum stress (ERS) plays an essential role in PDAC progression. Here, we aim to identify the ERS-related genes in PDAC and build reliable risk models for diagnosis, prognosis and immunotherapy response of PDAC patients as well as investigate the potential mechanism. METHODS We obtained PDAC cohorts with transcriptional profiles and clinical data from the ArrayExpress, The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Univariate Cox regression, LASSO regression and multivariate Cox regression analyses were used to construct an ERS-related prognostic signature. The CIBERSORT and ssGSEA algorithms were applied to explore the correlation between the prognostic signature and immune cell infiltration and immune-related pathways. The GDSC database and TIDE algorithm were used to predict responses to chemotherapy and immunotherapy, identifying potential drugs for treating patients with PDAC. RESULTS We established and validated an ERS-related prognostic signature comprising eight genes (HMOX1, TGFB1, JSRP1, GAPDH, CAV1, CHRNE, CD74 and ERN2). Patients with higher risk scores displayed worse outcomes than those with lower risk scores. PDAC patients in low-risk groups might benefit from immunotherapy. Dasatinib and lapatinib might have potential therapeutic implications in high-risk PDAC patients. CONCLUSION We established and validated an ERS-related prognostic signature comprising eight genes to predict the overall survival outcome of PDAC patients, which closely correlating with the response to immunotherapy and sensitivity to anti-tumor drugs, as well as could be beneficial for formulating clinical strategies and administering individualized treatments.
Collapse
Affiliation(s)
- Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China.
| | - Qianying Hu
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Zishan Xie
- Department of Breast Surgery, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Shaojing Chen
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Yixuan Li
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Nali Quan
- Clinical Laboratory, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Riqing Li
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, 518005, China.
| | - Lishan Fang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China.
| |
Collapse
|
5
|
Chen Z, Song Y, Li P, Gao W. GRIN2D knockdown suppresses the progression of lung adenocarcinoma by regulating the E2F signalling pathway. Cell Signal 2023; 107:110685. [PMID: 37084840 DOI: 10.1016/j.cellsig.2023.110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE Glutamate ionotropic receptor N-methyl-d-aspartate (NMDA) type subunit 2D (GRIN2D) is a member of the GRIN gene family and contributes to the development and function of the brain. GRIN2D was found to be upregulated in several types of cancers; however, its mechanism in lung adenocarcinoma (LUAD) remains unclear. METHODS We determined the role of GRIN2D in LUAD. In addition, we investigated the potential mechanism of GRIN2D in LUAD using bioinformatics analysis and confirmed this mechanism using biological approaches. RESULTS GRIN2D was found to be upregulated in LUAD tissues and cells. GRIN2D knockdown reduced the proliferation and accelerated the apoptosis of LUAD cells. GRIN2D also activated glycolysis, gluconeogenesis, and the E2F signalling pathway in LUAD. GRIN2D knockdown significantly inhibited glucose uptake, lactate production, the ATP/ADP ratio, ECAR, and OCR in LUAD cells. E2F1 overexpression eliminated the inhibitory effect of GRIN2D knockdown in LUAD cells. CONCLUSIONS GRIN2D knockdown suppresses cell growth, migration, glycolysis, and gluconeogenesis of LUAD by inhibiting the E2F signalling pathway.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Thoracic Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Yanhui Song
- Department of Internal Medicine, Rongfu Military Hospital of Jining City, Jinan 272101, Shandong, China
| | - Peipei Li
- Department of General Surgery, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
6
|
Chen F, Qin T, Zhang Y, Wei L, Dang Y, Liu P, Jin W. Reclassification of endometrial cancer and identification of key genes based on neural-related genes. Front Oncol 2022; 12:951437. [PMID: 36212450 PMCID: PMC9537575 DOI: 10.3389/fonc.2022.951437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy, and its incidence has been increasing every year. Nerve signaling is part of the tumor microenvironment and plays an active role in tumor progression and invasion. However, the relationship between the expression of neural-related genes (NRGs) and prognosis in endometrial cancer remains unknown. In this study, we obtained RNA sequencing data of EC from The Cancer Genome Atlas (TCGA). Endometrial cancer was classified into two subtypes based on the expression of neural-associated genes (NRGs), with statistical differences in clinical stage, pathological grading, and prognosis. A prognostic prediction model was established by LASSO-Cox analysis, and the results showed that high expression of NRGs was associated with poor survival prognosis. Further, CHRM2, GRIN1, L1CAM, and SEMA4F were found to be significantly associated with clinical stage, immune infiltration, immune response, and important signaling pathways in endometrial cancer. The reclassification of endometrial cancer based on NRG expression would be beneficial for future clinical practice. The genes CHRM2, GRIN1, L1CAM, and SEMA4F might serve as potential biomarkers of EC prognosis.
Collapse
Affiliation(s)
- Fan Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Tiansheng Qin
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
- *Correspondence: Tiansheng Qin, ; Weilin Jin,
| | - Yigan Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Linzhen Wei
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Yamei Dang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Peixia Liu
- Department of Obstetrics and Gynecology, Yuzhong County Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Weilin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
- *Correspondence: Tiansheng Qin, ; Weilin Jin,
| |
Collapse
|