1
|
Zhou C, Zhang YF, Yang ZJ, Huang YQ, Da MX. Computed tomography-based deep learning radiomics model for preoperative prediction of tumor immune microenvironment in colorectal cancer. World J Gastrointest Oncol 2025; 17:106103. [DOI: 10.4251/wjgo.v17.i5.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/08/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related death globally, with the tumor immune microenvironment (TIME) influencing prognosis and immunotherapy response. Current TIME evaluation relies on invasive biopsies, limiting its clinical application. This study hypothesized that computed tomography (CT)-based deep learning (DL) radiomics models can non-invasively predict key TIME biomarkers: Tumor-stroma ratio (TSR), tumor-infiltrating lymphocytes (TILs), and immune score (IS).
AIM To develop a non-invasive DL approach using preoperative CT radiomics to evaluate TIME components in CRC patients.
METHODS In this retrospective study, preoperative CT images of 315 pathologically confirmed CRC patients (220 in training cohort and 95 in validation cohort) were analyzed. Manually delineated regions of interest were used to extract DL features. Predictive models (DenseNet-121/169) for TSR, TILs, IS, and TIME classification were constructed. Performance was evaluated via receiver operating characteristic curves, calibration curves, and decision curve analysis (DCA).
RESULTS The DL-DenseNet-169 model achieved area under the curve (AUC) values of 0.892 [95% confidence interval (CI): 0.828-0.957] for TSR and 0.772 (95%CI: 0.674-0.870) for TIME score. The DenseNet-121 model yielded AUC values of 0.851 (95%CI: 0.768-0.933) for TILs and 0.852 (95%CI: 0.775-0.928) for IS. Calibration curves demonstrated strong prediction-observation agreement, and DCA confirmed clinical utility across threshold probabilities (P < 0.05 for all models).
CONCLUSION CT-based DL radiomics provides a reliable non-invasive method for preoperative TIME evaluation, enabling personalized immunotherapy strategies in CRC management.
Collapse
Affiliation(s)
- Chuan Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Yun-Feng Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jun Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Qian Huang
- Center of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu 610017, Sichuan Province, China
| | - Ming-Xu Da
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
2
|
Shin HB, Sheen H, Oh JH, Choi YE, Sung K, Kim HJ. Evaluating feature extraction reproducibility across image biomarker standardization initiative-compliant radiomics platforms using a digital phantom. J Appl Clin Med Phys 2025:e70110. [PMID: 40353843 DOI: 10.1002/acm2.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND The aim of this study was to thoroughly analyze the reproducibility of radiomics feature extraction across three Image Biomarker Standardization Initiative (IBSI)-compliant platforms using a digital phantom for benchmarking. It uncovers high consistency among common features while also pointing out the necessity for standardization in computational algorithms and mathematical definitions due to unique platform-specific features. METHODS We selected three widely used radiomics platforms: LIFEx, Computational Environment for Radiological Research (CERR), and PyRadiomics. Using the IBSI digital phantom, we performed a comparative analysis to extract and benchmark radiomics features. The study design included testing each platform's ability to consistently reproduce radiomics features, with statistical analyses to assess the variability and agreement among the platforms. RESULTS The results indicated varying levels of feature reproducibility across the platforms. Although some features showed high consistency, others varied significantly, highlighting the need for standardized computational algorithms. Specifically, LIFEx and PyRadiomics performed consistently well across many features, whereas CERR showed greater variability in certain feature categories than LIFEx and PyRadiomics. CONCLUSION The study findings highlight the need for harmonized feature calculation methods to enhance the reliability and clinical usefulness of radiomics. Additionally, this study recommends incorporating clinical data and establishing benchmarking procedures in future studies to enhance the role of radiomics in personalized medicine.
Collapse
Affiliation(s)
- Han-Back Shin
- Department of Radiation Oncology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Heesoon Sheen
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
- High-Energy Physics Center, Chung-Ang University, Seoul, Republic of Korea
| | - Jang-Hoon Oh
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Young Eun Choi
- Department of Radiation Oncology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Kihoon Sung
- Department of Radiation Oncology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyun Ju Kim
- Department of Radiation Oncology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
3
|
Cheng Y, Feng Z, Wang X. Construction and Value Analysis of a Prognostic Assessment Model Based on Radiomics and Genetic Data for Colorectal Cancer. Br J Hosp Med (Lond) 2025; 86:1-18. [PMID: 40135319 DOI: 10.12968/hmed.2024.0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims/Background Colorectal cancer (CRC) is one of the major global health problems, with high morbidity and mortality, underscoring the need for new diagnostic and prognostic tools. Therefore, this study aims to evaluate the significance of integrating radiomics with genetic data in CRC prognostic assessment and improve the accuracy of prognosis prediction. Methods This study included computed tomography (CT) images from 225 CRC patients and RNA-seq information from 654 patients, obtained from the TICA database. Key radiomics features and genes were identified through radiomics feature extraction, least absolute shrinkage and selection operator (LASSO) regression analysis, and Kaplan-Meier survival analysis. Furthermore, a CRC prognostic model was constructed using these key genes and radiomics features. Results This study identified 170 key radiomics features. Out of them, five were significantly associated with CRC prognosis. Transcriptome data analysis identified 8 key genes, among which the high expressions of Inhibin Subunit Beta B (INHBB), Potassium Voltage-Gated Channel Subfamily Q Member 2 (KCNQ2), and Ubiquilin Like (UBQLNL) were significantly correlated with poor prognosis. Age, tumor stage, pathological T stage, and pathological N stage were determined as independent prognostic factors. Moreover, immune infiltration analysis demonstrated that the immune score of the low-risk group was higher than that of the high-risk group, with significant differences in some immune cells, and key genes were correlated with immune cells. Additionally, the constructed CRC prognostic model incorporating three genes, INHBB, KCNQ2, and UBQLNL, exhibited high prediction accuracy in the validation set, with area under the curve (AUC) values of 0.80, 0.87, and 0.84 at 1-year, 3-year, and 5-year, respectively, indicating good prediction performance and reliability of the model. Conclusion The multimodal data combining radiomics features and gene expression data can improve the accuracy of CRC prognostic assessment, providing a valuable prognostic prediction tool for clinical practice and helping to guide the selection and optimization of treatment regimens.
Collapse
Affiliation(s)
- Yongna Cheng
- Department of Radiology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Ziming Feng
- Department of Cardiovascular Medicine, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Xiangming Wang
- Department of Radiology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| |
Collapse
|
4
|
Fan G, Wang D, Li Y, Xu Z, Wang H, Liu H, Liao X. Machine Learning Predicts Decompression Levels for Lumbar Spinal Stenosis Using Canal Radiomic Features from Computed Tomography Myelography. Diagnostics (Basel) 2023; 14:53. [PMID: 38201362 PMCID: PMC10795799 DOI: 10.3390/diagnostics14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The accurate preoperative identification of decompression levels is crucial for the success of surgery in patients with multi-level lumbar spinal stenosis (LSS). The objective of this study was to develop machine learning (ML) classifiers that can predict decompression levels using computed tomography myelography (CTM) data from LSS patients. METHODS A total of 1095 lumbar levels from 219 patients were included in this study. The bony spinal canal in CTM images was manually delineated, and radiomic features were extracted. The extracted data were randomly divided into training and testing datasets (8:2). Six feature selection methods combined with 12 ML algorithms were employed, resulting in a total of 72 ML classifiers. The main evaluation indicator for all classifiers was the area under the curve of the receiver operating characteristic (ROC-AUC), with the precision-recall AUC (PR-AUC) serving as the secondary indicator. The prediction outcome of ML classifiers was decompression level or not. RESULTS The embedding linear support vector (embeddingLSVC) was the optimal feature selection method. The feature importance analysis revealed the top 5 important features of the 15 radiomic predictors, which included 2 texture features, 2 first-order intensity features, and 1 shape feature. Except for shape features, these features might be eye-discernible but hardly quantified. The top two ML classifiers were embeddingLSVC combined with support vector machine (EmbeddingLSVC_SVM) and embeddingLSVC combined with gradient boosting (EmbeddingLSVC_GradientBoost). These classifiers achieved ROC-AUCs over 0.90 and PR-AUCs over 0.80 in independent testing among the 72 classifiers. Further comparisons indicated that EmbeddingLSVC_SVM appeared to be the optimal classifier, demonstrating superior discrimination ability, slight advantages in the Brier scores on the calibration curve, and Net benefits on the Decision Curve Analysis. CONCLUSIONS ML successfully extracted valuable and interpretable radiomic features from the spinal canal using CTM images, and accurately predicted decompression levels for LSS patients. The EmbeddingLSVC_SVM classifier has the potential to assist surgical decision making in clinical practice, as it showed high discrimination, advantageous calibration, and competitive utility in selecting decompression levels in LSS patients using canal radiomic features from CTM.
Collapse
Affiliation(s)
- Guoxin Fan
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518056, China; (G.F.); (Z.X.); (H.W.)
- Department of Spine Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Dongdong Wang
- Department of Orthopaedics, Putuo People’s Hospital, Tongji University, Shanghai 200060, China;
| | - Yufeng Li
- Department of Sports Medicine, Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China;
| | - Zhipeng Xu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518056, China; (G.F.); (Z.X.); (H.W.)
| | - Hong Wang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518056, China; (G.F.); (Z.X.); (H.W.)
| | - Huaqing Liu
- Artificial Intelligence Innovation Center, Research Institute of Tsinghua, Guangzhou 510700, China
| | - Xiang Liao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518056, China; (G.F.); (Z.X.); (H.W.)
| |
Collapse
|
5
|
Inchingolo R, Maino C, Cannella R, Vernuccio F, Cortese F, Dezio M, Pisani AR, Giandola T, Gatti M, Giannini V, Ippolito D, Faletti R. Radiomics in colorectal cancer patients. World J Gastroenterol 2023; 29:2888-2904. [PMID: 37274803 PMCID: PMC10237092 DOI: 10.3748/wjg.v29.i19.2888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
The main therapeutic options for colorectal cancer are surgical resection and adjuvant chemotherapy in non-metastatic disease. However, the evaluation of the overall adjuvant chemotherapy benefit in patients with a high risk of recurrence is challenging. Radiological images can represent a source of data that can be analyzed by using automated computer-based techniques, working on numerical information coded within Digital Imaging and Communications in Medicine files: This image numerical analysis has been named "radiomics". Radiomics allows the extraction of quantitative features from radiological images, mainly invisible to the naked eye, that can be further analyzed by artificial intelligence algorithms. Radiomics is expanding in oncology to either understand tumor biology or for the development of imaging biomarkers for diagnosis, staging, and prognosis, prediction of treatment response and diseases monitoring and surveillance. Several efforts have been made to develop radiomics signatures for colorectal cancer patient using computed tomography (CT) images with different aims: The preoperative prediction of lymph node metastasis, detecting BRAF and RAS gene mutations. Moreover, the use of delta-radiomics allows the analysis of variations of the radiomics parameters extracted from CT scans performed at different timepoints. Most published studies concerning radiomics and magnetic resonance imaging (MRI) mainly focused on the response of advanced tumors that underwent neoadjuvant therapy. Nodes status is the main determinant of adjuvant chemotherapy. Therefore, several radiomics model based on MRI, especially on T2-weighted images and ADC maps, for the preoperative prediction of nodes metastasis in rectal cancer has been developed. Current studies mostly focused on the applications of radiomics in positron emission tomography/CT for the prediction of survival after curative surgical resection and assessment of response following neoadjuvant chemoradiotherapy. Since colorectal liver metastases develop in about 25% of patients with colorectal carcinoma, the main diagnostic tasks of radiomics should be the detection of synchronous and metachronous lesions. Radiomics could be an additional tool in clinical setting, especially in identifying patients with high-risk disease. Nevertheless, radiomics has numerous shortcomings that make daily use extremely difficult. Further studies are needed to assess performance of radiomics in stratifying patients with high-risk disease.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Francesco Cortese
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Michele Dezio
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Antonio Rosario Pisani
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Teresa Giandola
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|