1
|
Gul AZ, Selek S, Bekiroglu S, Demirel M, Cakir FB, Uyanik B. Serum NMR metabolomics in distinct subtypes of hematologic malignancies. Exp Hematol 2025; 143:104710. [PMID: 39788411 DOI: 10.1016/j.exphem.2025.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Hematologic malignancies encompass a diverse array of subtypes, contributing to substantial heterogeneity that poses challenges in predicting clinical outcomes. Leveraging the capabilities of nuclear magnetic resonance holds substantial promise in the detection of serum biomarkers and individual metabolic alterations in patients. This study involved the analysis of the sera from patients with acute myeloid leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma to investigate the affected metabolites and their associated pathways. The quantitative one-dimensional (1D) 1H nuclear magnetic resonance method was employed to identify alterations. Metabolite annotations were validated using two-dimensional (2D) analyses. Discriminating chemometric models and receiver operating characteristic curves were created using the MetaboAnalyst platform. The findings revealed significant alterations in the serum levels of amino acid catabolism products, citrate cycle intermediates, and phospholipids. The acute myeloid leukemia group showed differences in glucogenic amino acids related to the glycolysis pathway, whereas the chronic lymphocytic leukemia and non-Hodgkin lymphoma groups displayed variances in fumarate and acetate levels linked to the citrate cycle pathway. In the leukemia groups, higher levels of products from the protein degradation pathway were observed. The biomarker panels for each malignancy group exhibited outstanding discrimination from controls. Healthy individuals differed distinctly from patients, indicating commonly observed metabolic adaptation patterns among frequent hematologic malignancies. The small cohort study using nuclear magnetic resonance metabolomics in various hematologic malignancy subtypes revealed significant changes in serum amino acid and protein degradation end-product levels, suggesting prolonged leukocyte lifespan and increased energy demand.
Collapse
Affiliation(s)
- Ayse Zehra Gul
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey.
| | - Sahabettin Selek
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Somer Bekiroglu
- National Biological and Chemical Test Center, TÜBİTAK Marmara Research Center, Gebze, Kocaeli, Turkey
| | - Metin Demirel
- Department of Medical Biochemistry, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey; Health Sciences Institute, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatma Betul Cakir
- Department of Pediatrics, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Bulent Uyanik
- Department of Medical Genetics Department, Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Fernández-Castillejo S, Badia J, de la Cruz-Merino L, Martín Garcia-Sáncho A, Carnicero-González F, Palazón-Carrión N, Ríos-Herranz E, de la Cruz-Vicente F, Rueda-Domínguez A, Martínez-Banaclocha N, Gómez-Codina J, Labrador J, Martínez-Madueño F, Amigó N, Salar-Silvestre A, Rodríguez-Abreu D, Gálvez-Carvajal L, Sánchez-Beato M, Provencio-Pulla M, Guirado-Risueño M, Nogales E, Sánchez-Margalet V, Jiménez-Cortegana C, Rodríguez-García G, Cumeras R, Gumà J. Ketone Bodies Are Potential Prognostic Biomarkers in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Results from the R2-GDP-GOTEL Trial. Cancers (Basel) 2025; 17:532. [PMID: 39941898 PMCID: PMC11817199 DOI: 10.3390/cancers17030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) who are ineligible for high-dose chemotherapy have limited treatment options and poor life expectancy. The purpose of this study is to identify a serum metabolomic profile that may be predictive of outcome in patients with R/R-DLBCL. Methods: This study included 69 R/R DLBCL patients from the R2-GDP-GOTEL trial (EudraCT 2014-001620-299). Serum samples were collected at baseline, and the mean length of follow-up was 41 months. Serum metabolites were analyzed by nuclear magnetic resonance (NMR). Metabolites were correlated with treatment response, progression-free survival (PFS), and overall survival (OS). Results: Serum levels of 3-hydroxybutyrate (3OHB) and acetone were significantly (p < 0.001) associated with PFS (3OHB: hazard ratio [HR] 7.7, 95% confidence interval [CI] 2.5-24.1; acetone: HR 9.32, 95% CI 2.75-31.6) and OS (3OHB: HR 9.32, 95% CI 2.75-31.6; acetone: HR 1.92, 95% CI 1.36-2.69). Serum values of 141 µM for 3OHB and 40 µM for acetone were the optimal cutoffs associated with the survival outcomes. Elevated 3OHB levels (>141 μM) were specific to the ABC subtype of DLBCL, while acetone levels were elevated in both types of DLCBL but more pronounced in ABC cases. In a multivariate survival analysis, including the International Prognostic Index (IPI) score and refractoriness status (R/R), 3OHB and acetone remained significant. To aid oncologists employing the R2-GDP regime, we constructed PFS and OS nomograms for R/R-DLBCL risk stratification, incorporating 3OHB levels or acetone levels, IPI score, and refractoriness status. The nomogram with 3OHB and refractoriness status showed a time-dependent AUC of 0.86 for 6-month PFS and 0.84 for 12-month OS. These nomograms provide a comprehensive tool for individualized risk assessment and treatment optimization. Conclusions: The ketone bodies 3OHB and acetone are potential prognostic biomarkers of poor outcome in R/R DLBCL patients treated with the R2-GDP regimen, independently of IPI score and chemorefractoriness status.
Collapse
Affiliation(s)
- Sara Fernández-Castillejo
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
| | - Joan Badia
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
| | - Luís de la Cruz-Merino
- Cancer Immunotherapy Group, Oncohematology and Genetics Department, Biomedicine Institute of Seville (IBIS)/CSIC, 41013 Seville, Spain; (L.d.l.C.-M.); (N.P.-C.); (E.N.)
- Department of Clinical Oncology, University Hospital Virgen Macarena and School of Medicine, University of Sevilla, 41013 Sevilla, Spain
| | - Alejandro Martín Garcia-Sáncho
- Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, 37007 Salamanca, Spain;
- CIBER de Cáncer (CIBERONC), Institute of Health Carlos III, 28029 Madrid, Spain
| | | | - Natalia Palazón-Carrión
- Cancer Immunotherapy Group, Oncohematology and Genetics Department, Biomedicine Institute of Seville (IBIS)/CSIC, 41013 Seville, Spain; (L.d.l.C.-M.); (N.P.-C.); (E.N.)
- Department of Clinical Oncology, University Hospital Virgen Macarena and School of Medicine, University of Sevilla, 41013 Sevilla, Spain
| | - Eduardo Ríos-Herranz
- Department of Hematology, Hospital Universitario Virgen de Valme, 41014 Sevilla, Spain;
| | - Fátima de la Cruz-Vicente
- Department of Hematology, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain; (F.d.l.C.-V.); (G.R.-G.)
| | - Antonio Rueda-Domínguez
- Department of Clinical Oncology. Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.R.-D.); (L.G.-C.)
| | - Natividad Martínez-Banaclocha
- Department of Oncology, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain;
| | - José Gómez-Codina
- Department of Clinical Oncology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Jorge Labrador
- Department of Hematology, Hospital Universitario de Burgos, 09006 Burgos, Spain;
| | - Francisca Martínez-Madueño
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Tarragona, Spain;
| | - Núria Amigó
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Tarragona, Spain;
- Biosfer Teslab, 43206 Reus, Tarragona, Spain
| | | | - Delvys Rodríguez-Abreu
- Department of Clinical Oncology, Hospital Universitario Insular de Gran Canaria, 35016 Las Palmas de Gran Canaria, Las Palmas, Spain;
| | - Laura Gálvez-Carvajal
- Department of Clinical Oncology. Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; (A.R.-D.); (L.G.-C.)
| | - Margarita Sánchez-Beato
- Lymphoma Research Group, Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, 28222 Majadahonda, Madrid, Spain;
| | - Mariano Provencio-Pulla
- Department of Clinical Oncology, Hospital Universitario Puerta De Hierro-Majadahonda, IDIPHISA, 28222 Majadahonda, Madrid, Spain;
| | - Maria Guirado-Risueño
- Department of Clinical Oncology, Hospital Universitario de Elche, 03203 Elche, Alicante, Spain;
| | - Esteban Nogales
- Cancer Immunotherapy Group, Oncohematology and Genetics Department, Biomedicine Institute of Seville (IBIS)/CSIC, 41013 Seville, Spain; (L.d.l.C.-M.); (N.P.-C.); (E.N.)
- Department of Clinical Oncology, University Hospital Virgen Macarena and School of Medicine, University of Sevilla, 41013 Sevilla, Spain
| | - Víctor Sánchez-Margalet
- Medical Biochemistry and Molecular Biology and Immunology, Hospital Universitario Virgen de la Macarena, 41009 Sevilla, Spain; (V.S.-M.); (C.J.-C.)
| | - Carlos Jiménez-Cortegana
- Medical Biochemistry and Molecular Biology and Immunology, Hospital Universitario Virgen de la Macarena, 41009 Sevilla, Spain; (V.S.-M.); (C.J.-C.)
| | - Guillermo Rodríguez-García
- Department of Hematology, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain; (F.d.l.C.-V.); (G.R.-G.)
| | - Raquel Cumeras
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Department of Electrical and Automatic Electronic Engineering, Universitat Rovira i Virgili (URV), 43002 Tarragona, Spain
| | - Josep Gumà
- Translational, Epidemiological and Clinical Oncological Research Group (GIOTEC), Department of Oncology, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Tarragona, Spain; (S.F.-C.); (J.B.); (F.M.-M.); (J.G.)
- Institut d’Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, 43204 Reus, Tarragona, Spain
- Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Tarragona, Spain;
| |
Collapse
|
3
|
Li X, Xu M, Chen Y, Zhai Y, Li J, Zhang N, Yin J, Wang L. Metabolomics for hematologic malignancies: Advances and perspective. Medicine (Baltimore) 2024; 103:e39782. [PMID: 39312378 PMCID: PMC11419435 DOI: 10.1097/md.0000000000039782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
With the use of advanced technology, metabolomics allows for a thorough examination of metabolites and other small molecules found in biological specimens, blood, and tissues. In recent years, metabolomics has been recognized that is closely related to the development of malignancies in the hematological system. Alterations in metabolomic pathways and networks are important in the pathogenesis of hematologic malignancies and can also provide a theoretical basis for early diagnosis, efficacy evaluation, accurate staging, and individualized targeted therapy. In this review, we summarize the progress of metabolomics, including glucose metabolism, amino acid metabolism, and lipid metabolism in lymphoma, myeloma, and leukemia through specific mechanisms and pathways. The research of metabolomics gives a new insight and provides therapeutic targets for the treatment of patients with hematologic malignancies.
Collapse
Affiliation(s)
- Xinglan Li
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Mengyu Xu
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Yanying Chen
- Hematology Laboratory, Linyi People’s Hospital, Linyi, PR China
| | - Yongqing Zhai
- Department of Orthopedics, Linyi People’s Hospital, Linyi, PR China
| | - Junhong Li
- Linyi People’s Hospital, Shandong Second Medical University, Linyi, PR China
| | - Ning Zhang
- Department of Anesthesiology, Linyi People’s Hospital, Linyi, PR China
| | - Jiawei Yin
- Central Laboratory, Linyi People’s Hospital, Linyi, PR China
- Key Laboratory of Tumor Biology, Linyi, PR China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, PR China
| | - Lijuan Wang
- Central Laboratory, Linyi People’s Hospital, Linyi, PR China
- Key Laboratory of Tumor Biology, Linyi, PR China
- Key Laboratory for Translational Oncology, Xuzhou Medical University, Xuzhou, PR China
- Department of Hematology, Linyi People’s Hospital, Linyi, PR China
| |
Collapse
|
4
|
Dai L, Fan G, Xie T, Li L, Tang L, Chen H, Shi Y, Han X. Single-cell and spatial transcriptomics reveal a high glycolysis B cell and tumor-associated macrophages cluster correlated with poor prognosis and exhausted immune microenvironment in diffuse large B-cell lymphoma. Biomark Res 2024; 12:58. [PMID: 38840205 PMCID: PMC11155084 DOI: 10.1186/s40364-024-00605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy characterized by varied responses to treatment and prognoses. Understanding the metabolic characteristics driving DLBCL progression is crucial for developing personalized therapies. METHODS This study utilized multiple omics technologies including single-cell transcriptomics (n = 5), bulk transcriptomics (n = 966), spatial transcriptomics (n = 10), immunohistochemistry (n = 34), multiple immunofluorescence (n = 20) and to elucidate the metabolic features of highly malignant DLBCL cells and tumor-associated macrophages (TAMs), along with their associated tumor microenvironment. Metabolic pathway analysis facilitated by scMetabolism, and integrated analysis via hdWGCNA, identified glycolysis genes correlating with malignancy, and the prognostic value of glycolysis genes (STMN1, ENO1, PKM, and CDK1) and TAMs were verified. RESULTS High-glycolysis malignant DLBCL tissues exhibited an immunosuppressive microenvironment characterized by abundant IFN_TAMs (CD68+CXCL10+PD-L1+) and diminished CD8+ T cell infiltration. Glycolysis genes were positively correlated with malignancy degree. IFN_TAMs exhibited high glycolysis activity and closely communicating with high-malignancy DLBCL cells identified within datasets. The glycolysis score, evaluated by seven genes, emerged as an independent prognostic factor (HR = 1.796, 95% CI: 1.077-2.995, p = 0.025 and HR = 2.631, 95% CI: 1.207-5.735, p = 0.015) along with IFN_TAMs were positively correlated with poor survival (p < 0.05) in DLBCL. Immunohistochemical validation of glycolysis markers (STMN1, ENO1, PKM, and CDK1) and multiple immunofluorescence validation of IFN_TAMs underscored their prognostic value (p < 0.05) in DLBCL. CONCLUSIONS This study underscores the significance of glycolysis in tumor progression and modulation of the immune microenvironment. The identified glycolysis genes and IFN_TAMs represent potential prognostic markers and therapeutic targets in DLBCL.
Collapse
Affiliation(s)
- Liyuan Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Centre, Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
5
|
Wang W, Zhen S, Ping Y, Wang L, Zhang Y. Metabolomic biomarkers in liquid biopsy: accurate cancer diagnosis and prognosis monitoring. Front Oncol 2024; 14:1331215. [PMID: 38384814 PMCID: PMC10879439 DOI: 10.3389/fonc.2024.1331215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Liquid biopsy, a novel detection method, has recently become an active research area in clinical cancer owing to its unique advantages. Studies on circulating free DNA, circulating tumor cells, and exosomes obtained by liquid biopsy have shown great advances and they have entered clinical practice as new cancer biomarkers. The metabolism of the body is dynamic as cancer originates and progresses. Metabolic abnormalities caused by cancer can be detected in the blood, sputum, urine, and other biological fluids via systemic or local circulation. A considerable number of recent studies have focused on the roles of metabolic molecules in cancer. The purpose of this review is to provide an overview of metabolic markers from various biological fluids in the latest clinical studies, which may contribute to cancer screening and diagnosis, differentiation of cancer typing, grading and staging, and prediction of therapeutic response and prognosis.
Collapse
Affiliation(s)
- Wenqian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Shanshan Zhen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Wu J, Meng F, Ran D, Song Y, Dang Y, Lai F, Yang L, Deng M, Song Y, Zhu J. The Metabolism and Immune Environment in Diffuse Large B-Cell Lymphoma. Metabolites 2023; 13:734. [PMID: 37367892 DOI: 10.3390/metabo13060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Cells utilize different metabolic processes to maintain their growth and differentiation. Tumor cells have made some metabolic changes to protect themselves from malnutrition. These metabolic alterations affect the tumor microenvironment and macroenvironment. Developing drugs targeting these metabolic alterations could be a good direction. In this review, we briefly introduce metabolic changes/regulations of the tumor macroenvironment and microenvironment and summarize potential drugs targeting the metabolism in diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jianbo Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Fuqing Meng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Danyang Ran
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yalong Song
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yunkun Dang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fan Lai
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Longyan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Mi Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
7
|
Alfaifi A, Refai MY, Alsaadi M, Bahashwan S, Malhan H, Al-Kahiry W, Dammag E, Ageel A, Mahzary A, Albiheyri R, Almehdar H, Qadri I. Metabolomics: A New Era in the Diagnosis or Prognosis of B-Cell Non-Hodgkin's Lymphoma. Diagnostics (Basel) 2023; 13:861. [PMID: 36900005 PMCID: PMC10000528 DOI: 10.3390/diagnostics13050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Enas Dammag
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ageel Ageel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Amjed Mahzary
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|