1
|
Safarian A, Mirshahvalad SA, Farbod A, Nasrollahi H, Pirich C, Beheshti M. Artificial intelligence for tumor [ 18F]FDG-PET imaging: Advancement and future trends-part I. Semin Nucl Med 2025; 55:328-344. [PMID: 40158896 DOI: 10.1053/j.semnuclmed.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [18F]FDG PET/CT, a well-established cornerstone of oncological imaging. Furthermore, the use of artificial intelligence (AI) algorithms has shown considerable promise in enhancing the interpretation of these quantitative parameters. Additionally, AI-driven models enable the integration of parameters from multiple imaging modalities along with clinical data, facilitating the development of comprehensive models with significant clinical impact. However, challenges remain regarding standardization and validation of the AI-powered models, as well as their implementation in real-world clinical practice. The variability in imaging acquisition protocols, segmentation methods, and feature extraction approaches across different institutions necessitates robust harmonization efforts to ensure reproducibility and clinical utility. Moreover, the successful translation of AI models into clinical practice requires prospective validation in large cohorts, as well as seamless integration into existing workflows to assess their ability to enhance clinicians' performance. This review aims to provide an overview of the literature and highlight three key applications: diagnostic impact, prediction of treatment response, and long-term patient prognostication. In the first part, we will focus on head and neck, lung, breast, gastroesophageal, colorectal, and gynecological malignancies.
Collapse
Affiliation(s)
- Alireza Safarian
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Rajaie Cardiovascular Medical and Research Center, Rajaie Cardiovascular Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Nasrollahi
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Wang Y, Zhao H, Fu P, Tian L, Su Y, Lyu Z, Gu W, Wang Y, Liu S, Wang X, Zheng H, Du J, Zhang R. Preoperative prediction of lymph node metastasis in colorectal cancer using 18F-FDG PET/CT peritumoral radiomics analysis. Med Phys 2024; 51:5214-5225. [PMID: 38801340 DOI: 10.1002/mp.17193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Radiomics has been used in the diagnosis of tumor lymph node metastasis (LNM). However, to date, most studies have been based on intratumoral radiomics. Few studies have focused on the use of 18F-fluorodeoxyglucose positron emission computed tomography (18F-FDG PET/CT) peritumoral radiomics for the diagnosis of LNM in colorectal cancer (CRC). PURPOSE Determining the value of radiomics features extracted from 18F-FDG PET/CT images of the peritumoral region in predicting LNM in patients with CRC. METHODS The clinical data and preoperative 18F-FDG PET/CT images of 244 CRC patients were retrospectively analyzed. Intratumoral and peritumoral radiomics features were screened using the mutual information method, and least absolute shrinkage and selection operator regression. Based on the selected radiomics features, a radiomics score (Rad-score) was calculated, and independent risk factors obtained from univariate and multivariate logistic regression analyses were used to construct clinical and combined (Radiomics + Clinical) models. The performance of these models was evaluated using the DeLong test, while their clinical utility was assessed by decision curve analysis. Finally, a nomogram was constructed to visualize the predictive model. RESULTS The most optimal set of features retained by the feature filtering process were all peritumoral radiomic features. Carcinoembryonic antigen levels, PET/CT-reported lymph node status and Rad-score were found to be independent risk factors for LNM. All three LNM risk assessment models exhibited good predictive performance, with the combined model showing the best classification results, with areas under the curve of 0.85 and 0.76 in the training and validation groups, respectively. The DeLong test revealed that the performance of the combined model was superior to that of the clinical and radiomics models in both the training and validation groups, although this difference was only statistically significant in the training group. DCA indicated that the combined model displayed better clinical utility. CONCLUSIONS 18F-FDG PET/CT peritumoral radiomics is uniquely suited to predict the presence of LNM in patients with CRC. In particular, the predictive efficacy of LNM for precision therapy and individualized patient management can be improved by using a combination of clinical risk factors.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Tian
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yexin Su
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhehao Lyu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xi Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Han Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingjing Du
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Zhang
- Department of Magnetic Resonance, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China
| |
Collapse
|
3
|
Zhi H, Xiang Y, Chen C, Zhang W, Lin J, Gao Z, Shen Q, Shao J, Yang X, Yang Y, Chen X, Zheng J, Lu M, Pan B, Dong Q, Shen X, Ma C. Development and validation of a machine learning-based 18F-fluorodeoxyglucose PET/CT radiomics signature for predicting gastric cancer survival. Cancer Imaging 2024; 24:99. [PMID: 39080806 PMCID: PMC11290137 DOI: 10.1186/s40644-024-00741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Survival prognosis of patients with gastric cancer (GC) often influences physicians' choice of their follow-up treatment. This study aimed to develop a positron emission tomography (PET)-based radiomics model combined with clinical tumor-node-metastasis (TNM) staging to predict overall survival (OS) in patients with GC. METHODS We reviewed the clinical information of a total of 327 patients with pathological confirmation of GC undergoing 18 F-fluorodeoxyglucose (18 F-FDG) PET scans. The patients were randomly classified into training (n = 229) and validation (n = 98) cohorts. We extracted 171 PET radiomics features from the PET images and determined the PET radiomics scores (RS) using the least absolute shrinkage and selection operator (LASSO) and random survival forest (RSF). A radiomics model, including PET RS and clinical TNM staging, was constructed to predict the OS of patients with GC. This model was evaluated for discrimination, calibration, and clinical usefulness. RESULTS On multivariate COX regression analysis, the difference between age, carcinoembryonic antigen (CEA), clinical TNM, and PET RS in GC patients was statistically significant (p < 0.05). A radiomics model was developed based on the results of COX regression. The model had the Harrell's concordance index (C-index) of 0.817 in the training cohort and 0.707 in the validation cohort and performed better than a single clinical model and a model with clinical features combined with clinical TNM staging. Further analyses showed higher PET RS in patients who were older (p < 0.001) and those who had elevated CEA (p < 0.001) and higher clinical TNM (p < 0.001). At different clinical TNM stages, a higher PET RS was associated with a worse survival prognosis. CONCLUSIONS Radiomics models based on PET RS, clinical TNM, and clinical features may provide new tools for predicting OS in patients with GC.
Collapse
Affiliation(s)
- Huaiqing Zhi
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yilan Xiang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenbin Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiteng Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Lin
- Department of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zekan Gao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingzheng Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiancan Shao
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinxin Yang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yunjun Yang
- Department of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaodong Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jingwei Zheng
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bujian Pan
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiantong Dong
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Chunxue Ma
- Department of Gastrointestinal Surgery Nursing Unit, Ward 443, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Garbarino GM, Polici M, Caruso D, Laghi A, Mercantini P, Pilozzi E, van Berge Henegouwen MI, Gisbertz SS, van Grieken NCT, Berardi E, Costa G. Radiomics in Oesogastric Cancer: Staging and Prediction of Preoperative Treatment Response: A Narrative Review and the Results of Personal Experience. Cancers (Basel) 2024; 16:2664. [PMID: 39123392 PMCID: PMC11311587 DOI: 10.3390/cancers16152664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Oesophageal, gastroesophageal, and gastric malignancies are often diagnosed at locally advanced stage and multimodal therapy is recommended to increase the chances of survival. However, given the significant variation in treatment response, there is a clear imperative to refine patient stratification. The aim of this narrative review was to explore the existing evidence and the potential of radiomics to improve staging and prediction of treatment response of oesogastric cancers. METHODS The references for this review article were identified via MEDLINE (PubMed) and Scopus searches with the terms "radiomics", "texture analysis", "oesophageal cancer", "gastroesophageal junction cancer", "oesophagogastric junction cancer", "gastric cancer", "stomach cancer", "staging", and "treatment response" until May 2024. RESULTS Radiomics proved to be effective in improving disease staging and prediction of treatment response for both oesophageal and gastric cancer with all imaging modalities (TC, MRI, and 18F-FDG PET/CT). The literature data on the application of radiomics to gastroesophageal junction cancer are very scarce. Radiomics models perform better when integrating different imaging modalities compared to a single radiology method and when combining clinical to radiomics features compared to only a radiomics signature. CONCLUSIONS Radiomics shows potential in noninvasive staging and predicting response to preoperative therapy among patients with locally advanced oesogastric cancer. As a future perspective, the incorporation of molecular subgroup analysis to clinical and radiomic features may even increase the effectiveness of these predictive and prognostic models.
Collapse
Affiliation(s)
| | - Michela Polici
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Paolo Mercantini
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Mark I. van Berge Henegouwen
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, 1081 HV Amsterdam, The Netherlands
| | - Suzanne S. Gisbertz
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, 1081 HV Amsterdam, The Netherlands
| | - Nicole C. T. van Grieken
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eva Berardi
- Department of Radiology, San Camillo Hospital, ASL RM 1, 00152 Rome, Italy
| | - Gianluca Costa
- Department of Life Science, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
5
|
Li T, Xu M, Yang S, Wang G, Liu Y, Liu K, Zhao K, Su X. Development and validation of [18 F]-PSMA-1007 PET-based radiomics model to predict biochemical recurrence-free survival following radical prostatectomy. Eur J Nucl Med Mol Imaging 2024; 51:2806-2818. [PMID: 38691111 DOI: 10.1007/s00259-024-06734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE Biochemical recurrence (BCR) following radical prostatectomy (RP) is a significant concern for patients with prostate cancer. Reliable prediction models are needed to identify patients at risk for BCR and facilitate appropriate management. This study aimed to develop and validate a clinical-radiomics model based on preoperative [18 F]PSMA-1007 PET for predicting BCR-free survival (BRFS) in patients who underwent RP for prostate cancer. MATERIALS AND METHODS A total of 236 patients with histologically confirmed prostate cancer who underwent RP were retrospectively analyzed. All patients had a preoperative [18 F]PSMA-1007 PET/CT scan. Radiomics features were extracted from the primary tumor region on PET images. A radiomics signature was developed using the least absolute shrinkage and selection operator (LASSO) Cox regression model. The performance of the radiomics signature in predicting BRFS was assessed using Harrell's concordance index (C-index). The clinical-radiomics nomogram was constructed using the radiomics signature and clinical features. The model was externally validated in an independent cohort of 98 patients. RESULTS The radiomics signature comprised three features and demonstrated a C-index of 0.76 (95% CI: 0.60-0.91) in the training cohort and 0.71 (95% CI: 0.63-0.79) in the validation cohort. The radiomics signature remained an independent predictor of BRFS in multivariable analysis (HR: 2.48, 95% CI: 1.47-4.17, p < 0.001). The clinical-radiomics nomogram significantly improved the prediction performance (C-index: 0.81, 95% CI: 0.66-0.95, p = 0.007) in the training cohort and (C-index: 0.78 95% CI: 0.63-0.89, p < 0.001) in the validation cohort. CONCLUSION We developed and validated a novel [18 F]PSMA-1007 PET-based clinical-radiomics model that can predict BRFS following RP in prostate cancer patients. This model may be useful in identifying patients with a higher risk of BCR, thus enabling personalized risk stratification and tailored management strategies.
Collapse
Affiliation(s)
- Tiancheng Li
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Mimi Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Shuye Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Guolin Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yinuo Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Kaifeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Kui Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
6
|
Huang W, Son MH, Ha LN, Kang L, Cai W. More than meets the eye: 2-[ 18F]FDG PET-based radiomics predicts lymph node metastasis in colorectal cancer patients to enable precision medicine. Eur J Nucl Med Mol Imaging 2024; 51:1725-1728. [PMID: 38424238 PMCID: PMC11042987 DOI: 10.1007/s00259-024-06664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No.8 Xishiku Str, Xicheng District, Beijing, 100034, China
| | - Mai Hong Son
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| | - Le Ngoc Ha
- Department of Nuclear Medicine, Hospital 108, Hanoi, Vietnam
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No.8 Xishiku Str, Xicheng District, Beijing, 100034, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
7
|
Huang W, Tao Z, Younis MH, Cai W, Kang L. Nuclear medicine radiomics in digestive system tumors: Concept, applications, challenges, and future perspectives. VIEW 2023; 4:20230032. [PMID: 38179181 PMCID: PMC10766416 DOI: 10.1002/viw.20230032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 01/06/2024] Open
Abstract
Radiomics aims to develop novel biomarkers and provide relevant deeper subvisual information about pathology, immunophenotype, and tumor microenvironment. It uses automated or semiautomated quantitative analysis of high-dimensional images to improve characterization, diagnosis, and prognosis. Recent years have seen a rapid increase in radiomics applications in nuclear medicine, leading to some promising research results in digestive system oncology, which have been driven by big data analysis and the development of artificial intelligence. Although radiomics advances one step further toward the non-invasive precision medical analysis, it is still a step away from clinical application and faces many challenges. This review article summarizes the available literature on digestive system tumors regarding radiomics in nuclear medicine. First, we describe the workflow and steps involved in radiomics analysis. Subsequently, we discuss the progress in clinical application regarding the utilization of radiomics for distinguishing between various diseases and evaluating their prognosis, and demonstrate how radiomics advances this field. Finally, we offer our viewpoint on how the field can progress by addressing the challenges facing clinical implementation.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zihao Tao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Miccichè F, Rizzo G, Casà C, Leone M, Quero G, Boldrini L, Bulajic M, Corsi DC, Tondolo V. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Front Med (Lausanne) 2023; 10:1189740. [PMID: 37663653 PMCID: PMC10469447 DOI: 10.3389/fmed.2023.1189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION Gastric cancer (GC) is an aggressive and clinically heterogeneous tumor, and better risk stratification of lymph node metastasis (LNM) could lead to personalized treatments. The role of radiomics in the prediction of nodal involvement in GC has not yet been systematically assessed. This study aims to assess the role of radiomics in the prediction of LNM in GC. METHODS A PubMed/MEDLINE systematic review was conducted to assess the role of radiomics in LNM. The inclusion criteria were as follows: i. original articles, ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were selected and analyzed by a multidisciplinary board of two radiation oncologists and one surgeon, under the supervision of one radiation oncologist, one surgeon, and one medical oncologist. RESULTS A total of 171 studies were obtained using the search strategy mentioned on PubMed. After the complete selection process, a total of 20 papers were considered eligible for the analysis of the results. Radiomics methods were applied in GC to assess the LNM risk. The number of patients, imaging modalities, type of predictive models, number of radiomics features, TRIPOD classification, and performances of the models were reported. CONCLUSIONS Radiomics seems to be a promising approach for evaluating the risk of LNM in GC. Further and larger studies are required to evaluate the clinical impact of the inclusion of radiomics in a comprehensive decision support system (DSS) for GC.
Collapse
Affiliation(s)
- Francesco Miccichè
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianluca Rizzo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Calogero Casà
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Mariavittoria Leone
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Giuseppe Quero
- U.O.C. di Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- U.O.C. di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Milutin Bulajic
- U.O.C. di Endoscopia Digestiva, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | | | - Vincenzo Tondolo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| |
Collapse
|