1
|
Bischoff P, Bou-Gharios J, Noël G, Burckel H. Role of autophagy in modulating tumor cell radiosensitivity: Exploring pharmacological interventions for glioblastoma multiforme treatment. Cancer Radiother 2024; 28:416-423. [PMID: 39327199 DOI: 10.1016/j.canrad.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/28/2024]
Abstract
Autophagy is an innate cellular process characterized by self-digestion, wherein cells degrade or recycle aged proteins, misfolded proteins, and damaged organelles via lysosomal pathways. Its crucial role in maintaining cellular homeostasis, ensuring development and survival is well established. In the context of cancer therapy, autophagy's importance is firmly recognized, given its critical impact on treatment efficacy. Following radiotherapy, several factors can modulate autophagy including parameters related to radiation type and delivery methods. The concomitant use of chemotherapy with radiotherapy further influences autophagy, potentially either enhancing radiosensitivity or promoting radioresistance. This review article discusses some pharmacological agents and drugs capable of modulating autophagy levels in conjunction with radiation in tumor cells, with a focus on those identified as potential radiosensitizers in glioblastoma multiforme treatment.
Collapse
Affiliation(s)
- Pierre Bischoff
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Georges Noël
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (ICANS), Unicancer, 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
2
|
Mucignat G, Montanucci L, Elgendy R, Giantin M, Laganga P, Pauletto M, Mutinelli F, Vascellari M, Leone VF, Dacasto M, Granato A. A Whole-Transcriptomic Analysis of Canine Oral Melanoma: A Chance to Disclose the Radiotherapy Effect and Outcome-Associated Gene Signature. Genes (Basel) 2024; 15:1065. [PMID: 39202425 PMCID: PMC11353338 DOI: 10.3390/genes15081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Oral melanoma (OM) is the most common malignant oral tumour among dogs and shares similarities with human mucosal melanoma (HMM), validating the role of canine species as an immunocompetent model for cancer research. In both humans and dogs, the prognosis is poor and radiotherapy (RT) represents a cornerstone in the management of this tumour, either as an adjuvant or a palliative treatment. In this study, by means of RNA-seq, the effect of RT weekly fractionated in 9 Gray (Gy), up to a total dose of 36 Gy (4 weeks), was evaluated in eight dogs affected by OM. Furthermore, possible transcriptomic differences in blood and biopsies that might be associated with a longer overall survival (OS) were investigated. The immune response, glycosylation, cell adhesion, and cell cycle were the most affected pathways by RT, while tumour microenvironment (TME) composition and canonical and non-canonical WNT pathways appeared to be modulated in association with OS. Taking these results as a whole, this study improved our understanding of the local and systemic effect of RT, reinforcing the pivotal role of anti-tumour immunity in the control of canine oral melanoma (COM).
Collapse
Affiliation(s)
- Greta Mucignat
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Ludovica Montanucci
- McGovern Medical School and Center for Neurogenomics, UTHealth, University of Texas Houston, Houston, TX 77030, USA;
| | - Ramy Elgendy
- Discovery Sciences, Centre for Genomics Research, AstraZeneca, 411 10 Gothenburg, Sweden;
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Paola Laganga
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Franco Mutinelli
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Marta Vascellari
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Vito Ferdinando Leone
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Anna Granato
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| |
Collapse
|
3
|
Rampazzo E, Persano L, Karim N, Hodgking G, Pinto R, Casciati A, Tanori M, Zambotti A, Bresolin S, Cani A, Pannicelli A, Davies IW, Hancock C, Palego C, Viola G, Mancuso M, Merla C. On the effects of 30.5 GHz sinusoidal wave exposure on glioblastoma organoids. Front Oncol 2024; 14:1307516. [PMID: 38884089 PMCID: PMC11176452 DOI: 10.3389/fonc.2024.1307516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Glioblastoma (grade IV) is the most aggressive primary brain tumor in adults, representing one of the biggest therapeutic challenges due to its highly aggressive nature. In this study, we investigated the impact of millimeter waves on tridimensional glioblastoma organoids derived directly from patient tumors. Our goal was to explore novel therapeutic possibilities in the fight against this challenging disease. Methods The exposure setup was meticulously developed in-house, and we employed a comprehensive dosimetry approach, combining numerical and experimental methods. Biological endpoints included a global transcriptional profiling analysis to highlight possible deregulated pathways, analysis of cell morphological changes, and cell phenotypic characterization which are all important players in the control of glioblastoma progression. Results and discussion Our results revealed a significant effect of continuous millimeter waves at 30.5 GHz on cell proliferation and apoptosis, although without affecting the differentiation status of glioblastoma cells composing the organoids. Excitingly, when applying a power level of 0.1 W (Root Mean Square), we discovered a remarkable (statistically significant) therapeutic effect when combined with the chemotherapeutic agent Temozolomide, leading to increased glioblastoma cell death. These findings present a promising interventional window for treating glioblastoma cells, harnessing the potential therapeutic benefits of 30.5 GHz CW exposure. Temperature increase during treatments was carefully monitored and simulated with a good agreement, demonstrating a negligible involvement of the temperature elevation for the observed effects. By exploring this innovative approach, we pave the way for improved future treatments of glioblastoma that has remained exceptionally challenging until now.
Collapse
Affiliation(s)
- Elena Rampazzo
- Department of Women's and Children's Health (SDB), University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health (SDB), University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Nissar Karim
- School of Computer Science and Engineering, Bangor University, Bangor, United Kingdom
| | | | - Rosanna Pinto
- National Italian Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Rome, Italy
| | - Arianna Casciati
- National Italian Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Rome, Italy
| | - Mirella Tanori
- National Italian Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Rome, Italy
| | - Alessandro Zambotti
- National Italian Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Division of Health Protection Technologies, Rome, Italy
| | - Silvia Bresolin
- Department of Women's and Children's Health (SDB), University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Alice Cani
- Department of Women's and Children's Health (SDB), University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Alessandro Pannicelli
- Technical Unit of Energetic Efficiency, National Italian Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | | | - Cristopher Hancock
- School of Computer Science and Engineering, Bangor University, Bangor, United Kingdom
- CREO Medical Limited, Bath, United Kingdom
| | - Cristiano Palego
- School of Computer Science and Engineering, Bangor University, Bangor, United Kingdom
| | - Giampietro Viola
- Department of Women's and Children's Health (SDB), University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Mariateresa Mancuso
- Technical Unit of Energetic Efficiency, National Italian Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Caterina Merla
- Technical Unit of Energetic Efficiency, National Italian Agency for Energy New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
4
|
Jabbour SK, Kumar R, Anderson B, Chino JP, Jethwa KR, McDowell L, Lo AC, Owen D, Pollom EL, Tree AC, Tsang DS, Yom SS. Combinatorial Approaches for Chemotherapies and Targeted Therapies With Radiation: United Efforts to Innovate in Patient Care. Int J Radiat Oncol Biol Phys 2024; 118:1240-1261. [PMID: 38216094 DOI: 10.1016/j.ijrobp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Combinatorial therapies consisting of radiation therapy (RT) with systemic therapies, particularly chemotherapy and targeted therapies, have moved the needle to augment disease control across nearly all disease sites for locally advanced disease. Evaluating these important combinations to incorporate more potent therapies with RT will aid our understanding of toxicity and efficacy for patients. This article discusses multiple disease sites and includes a compilation of contributions from expert Red Journal editors from each disease site. Leveraging improved systemic control with novel agents, we must continue efforts to study novel treatment combinations with RT.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey.
| | - Ritesh Kumar
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Jersey
| | - Bethany Anderson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Junzo P Chino
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lachlan McDowell
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrea C Lo
- Department of Radiation Oncology, BC Cancer Vancouver Centre, Vancouver, British Columbia, Canada
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Alison C Tree
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, California
| |
Collapse
|
5
|
Rinaldi I, Muthalib A, Gondhowiardjo S, Setiawan T, Gunawan A, Susanto N, Magdalena L, Winston K, Disamantiji A, Wirawan B. Relapsed isolated CNS lymphoma treated with radiotherapy and intrathecal methotrexate followed by high-dose intravenous methotrexate, rituximab, and temozolomide: A case report. Clin Case Rep 2024; 12:e8409. [PMID: 38435502 PMCID: PMC10907348 DOI: 10.1002/ccr3.8409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 03/05/2024] Open
Abstract
Key Clinical Message Optimized treatments for relapsed isolated CNS lymphoma (RI-SCNSL) remains under investigation. Temozolomide combination-based therapy, which is often used in glioblastoma may be used as potential treatment in RI-SCNSL. Abstract One of the most common types of non-Hodgkin lymphoma (NHL) is diffuse large B-cell lymphoma (DLBCL). Despite advances in treatment, relapsed isolated CNS lymphoma (RI-SCNSL) from DLBCL remains an issue. The optimal approach in RI-SCNSL remains an area of active investigation as currently there is no high level of evidence for the treatments due to lack of randomized studies. In this case report, we present a DLBCL patient with CNS recurrence treated radiotherapy and intrathecal methotrexate (MTX) followed by intravenous high-dose MTX, rituximab, and temozolomide. To the best of our knowledge, this is the first case report describing RI-SCNSL treated with the regiments above which also include temozolomide which is used for glioblastoma.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of MedicineUniversitas IndonesiaJakartaIndonesia
- Department of Internal MedicineGading Pluit HospitalJakartaIndonesia
| | - Abdul Muthalib
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of MedicineUniversitas IndonesiaJakartaIndonesia
- Department of Internal MedicineGading Pluit HospitalJakartaIndonesia
| | | | - Tjondro Setiawan
- Department of Internal MedicineGading Pluit HospitalJakartaIndonesia
| | - Andhika Gunawan
- Department of Nuclear MedicineGading Pluit HospitalJakartaIndonesia
| | - Nelly Susanto
- Department of RadiologyGading Pluit HospitalJakartaIndonesia
| | | | - Kevin Winston
- Hospital MedicineBhakti Medicare HospitalCicurugIndonesia
| | | | | |
Collapse
|
6
|
Taherifard E, Bakhtiar M, Mahnoor M, Ahmed R, Cavalcante L, Zhang J, Saeed A. Efficacy and safety of temozolomide-based regimens in advanced pancreatic neuroendocrine tumors: a systematic review and meta-analysis. BMC Cancer 2024; 24:192. [PMID: 38347461 PMCID: PMC10860315 DOI: 10.1186/s12885-024-11926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/27/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Recent advances in the management of pancreatic neuroendocrine tumors (pNETs) highlight the potential benefits of temozolomide, an alkylating agent, for these patients. In this meta-analysis, we aimed to assess the outcome of temozolomide, alone or in combination with other anticancer medications in patients with advanced pNET. METHODS Online databases of PubMed, Web of Science, Embase, the Cochrane Library, and ClinicalTrials.gov were searched systematically for clinical trials that reported the efficacy and safety of temozolomide in patients with advanced pNET. Random-effect model was utilized to estimate pooled rates of outcomes based on Response Evaluation Criteria in Solid Tumors criteria, biochemical response, and adverse events (AEs). RESULTS A total of 14 studies, providing details of 441 individuals with advanced pNET, were included. The quantitative analyses showed a pooled objective response rate (ORR) of 41.2% (95% confidence interval, CI, of 32.4%-50.6%), disease control rate (DCR) of 85.3% (95% CI of 74.9%-91.9%), and a more than 50% decrease from baseline chromogranin A levels of 44.9% (95% CI of 31.6%-49.0%). Regarding safety, the results showed that the pooled rates of nonserious AEs and serious AEs were 93.8% (95% CI of 88.3%-96.8%) and 23.7% (95% CI of 12.0%-41.5%), respectively. The main severe AEs encompassed hematological toxicities. CONCLUSIONS In conclusion, our meta-analysis suggests that treatment with temozolomide, either as a monotherapy or in combination with other anticancer treatments might be an effective and relatively safe option for patients with advanced locally unresectable and metastatic pNET. However, additional clinical trials are required to further strengthen these findings. This study has been registered in PROSPERO (CRD42023409280).
Collapse
Affiliation(s)
- Erfan Taherifard
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Muhammad Bakhtiar
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mahnoor Mahnoor
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rabeea Ahmed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Janie Zhang
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Minea RO, Thein TZ, Yang Z, Campan M, Ward PM, Schönthal AH, Chen TC. NEO212, temozolomide conjugated to NEO100, exerts superior therapeutic activity over temozolomide in preclinical chemoradiation models of glioblastoma. Neurooncol Adv 2024; 6:vdae095. [PMID: 39022643 PMCID: PMC11252566 DOI: 10.1093/noajnl/vdae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background The chemotherapeutic standard of care for patients with glioblastoma (GB) is radiation therapy (RT) combined with temozolomide (TMZ). However, during the twenty years since its introduction, this so-called Stupp protocol has revealed major drawbacks, because nearly half of all GBs harbor intrinsic treatment resistance mechanisms. Prime among these are the increased expression of the DNA repair protein O6-guanine-DNA methyltransferase (MGMT) and cellular deficiency in DNA mismatch repair (MMR). Patients with such tumors receive very little, if any, benefit from TMZ. We are developing a novel molecule, NEO212 (TMZ conjugated to NEO100), that harbors the potential to overcome these limitations. Methods We used mouse models that were orthotopically implanted with GB cell lines or primary, radioresistant human GB stem cells, representing different treatment resistance mechanisms. Animals received NEO212 (or TMZ for comparison) without or with RT. Overall survival was recorded, and histology studies quantified DNA damage, apoptosis, microvessel density, and impact on bone marrow. Results In all tumor models, replacing TMZ with NEO212 in a schedule designed to mimic the Stupp protocol achieved a strikingly superior extension of survival, especially in TMZ-resistant and RT-resistant models. While NEO212 displayed pronounced radiation-sensitizing, DNA-damaging, pro-apoptotic, and anti-angiogenic effects in tumor tissue, it did not cause bone marrow toxicity. Conclusions NEO212 is a candidate drug to potentially replace TMZ within the standard Stupp protocol. It has the potential to become the first chemotherapeutic agent to significantly extend overall survival in TMZ-resistant patients when combined with radiation.
Collapse
Affiliation(s)
- Radu O Minea
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California, USA
- Norris Comprehensive Cancer Center, KSOM, USC, Los Angeles, California, USA
| | - Thu Zan Thein
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California, USA
| | - Zhuoyue Yang
- Department of Molecular Microbiology and Immunology, KSOM, USC, Los Angeles, California, USA
| | - Mihaela Campan
- USC Clinical Laboratories, KSOM, USC, Los Angeles, California, USA
| | - Pamela M Ward
- Department of Pathology, KSOM, USC, Los Angeles, California, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, KSOM, USC, Los Angeles, California, USA
| | - Thomas C Chen
- NeOnc Technologies, Inc., Los Angeles, California, USA
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California, USA
- Department of Pathology, KSOM, USC, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, KSOM, USC, Los Angeles, California, USA
| |
Collapse
|
8
|
Kaina B. Temozolomide, Procarbazine and Nitrosoureas in the Therapy of Malignant Gliomas: Update of Mechanisms, Drug Resistance and Therapeutic Implications. J Clin Med 2023; 12:7442. [PMID: 38068493 PMCID: PMC10707404 DOI: 10.3390/jcm12237442] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2024] Open
Abstract
The genotoxic methylating agents temozolomide (TMZ) and procarbazine and the chloroethylating nitrosourea lomustine (CCNU) are part of the standard repertoire in the therapy of malignant gliomas (CNS WHO grade 3 and 4). This review describes the mechanisms of their cytotoxicity and cytostatic activity through apoptosis, necroptosis, drug-induced senescence, and autophagy, interaction of critical damage with radiation-induced lesions, mechanisms of glioblastoma resistance to alkylating agents, including the alkyltransferase MGMT, mismatch repair, DNA double-strand break repair and DNA damage responses, as well as IDH-1 and PARP-1. Cyclin-dependent kinase inhibitors such as regorafenib, synthetic lethality using PARP inhibitors, and alternative therapies including tumor-treating fields (TTF) and CUSP9v3 are discussed in the context of alkylating drug therapy and overcoming glioblastoma chemoresistance. Recent studies have revealed that senescence is the main trait induced by TMZ in glioblastoma cells, exhibiting hereupon the senescence-associated secretory phenotype (SASP). Strategies to eradicate therapy-induced senescence by means of senolytics as well as attenuating SASP by senomorphics are receiving increasing attention, with therapeutic implications to be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
9
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Erthal LCS, Shi Y, Sweeney KJ, Gobbo OL, Ruiz-Hernandez E. Nanocomposite formulation for a sustained release of free drug and drug-loaded responsive nanoparticles: an approach for a local therapy of glioblastoma multiforme. Sci Rep 2023; 13:5094. [PMID: 36991081 PMCID: PMC10060267 DOI: 10.1038/s41598-023-32257-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Malignant gliomas are a type of primary brain tumour that originates in glial cells. Among them, glioblastoma multiforme (GBM) is the most common and the most aggressive brain tumour in adults, classified as grade IV by the World Health Organization. The standard care for GBM, known as the Stupp protocol includes surgical resection followed by oral chemotherapy with temozolomide (TMZ). This treatment option provides a median survival prognosis of only 16-18 months to patients mainly due to tumour recurrence. Therefore, enhanced treatment options are urgently needed for this disease. Here we show the development, characterization, and in vitro and in vivo evaluation of a new composite material for local therapy of GBM post-surgery. We developed responsive nanoparticles that were loaded with paclitaxel (PTX), and that showed penetration in 3D spheroids and cell internalization. These nanoparticles were found to be cytotoxic in 2D (U-87 cells) and 3D (U-87 spheroids) models of GBM. The incorporation of these nanoparticles into a hydrogel facilitates their sustained release in time. Moreover, the formulation of this hydrogel containing PTX-loaded responsive nanoparticles and free TMZ was able to delay tumour recurrence in vivo after resection surgery. Therefore, our formulation represents a promising approach to develop combined local therapies against GBM using injectable hydrogels containing nanoparticles.
Collapse
Affiliation(s)
- Luiza C S Erthal
- School of Pharmacy and Pharmaceutical Sciences and Trinity St. James's Cancer Institute, Panoz Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Kieron J Sweeney
- National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
- Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences and Trinity St. James's Cancer Institute, Panoz Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Eduardo Ruiz-Hernandez
- School of Pharmacy and Pharmaceutical Sciences and Trinity St. James's Cancer Institute, Panoz Institute, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
11
|
Śledzińska P, Bebyn M, Furtak J, Koper A, Koper K. Current and promising treatment strategies in glioma. Rev Neurosci 2022:revneuro-2022-0060. [PMID: 36062548 DOI: 10.1515/revneuro-2022-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022]
Abstract
Gliomas are the most common primary central nervous system tumors; despite recent advances in diagnosis and treatment, glioma patients generally have a poor prognosis. Hence there is a clear need for improved therapeutic options. In recent years, significant effort has been made to investigate immunotherapy and precision oncology approaches. The review covers well-established strategies such as surgery, temozolomide, PCV, and mTOR inhibitors. Furthermore, it summarizes promising therapies: tumor treating fields, immune therapies, tyrosine kinases inhibitors, IDH(Isocitrate dehydrogenase)-targeted approaches, and others. While there are many promising treatment strategies, none fundamentally changed the management of glioma patients. However, we are still awaiting the outcome of ongoing trials, which have the potential to revolutionize the treatment of glioma.
Collapse
Affiliation(s)
- Paulina Śledzińska
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Marek Bebyn
- Molecular Oncology and Genetics Department, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.,Department of Neurooncology and Radiosurgery, The F. Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
| | - Agnieszka Koper
- Department of Oncology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, 85-067 Bydgoszcz, Poland.,Department of Oncology, Franciszek Lukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland
| | - Krzysztof Koper
- Department of Oncology, Franciszek Lukaszczyk Oncology Centre, 85-796 Bydgoszcz, Poland.,Department of Clinical Oncology, and Nursing, Departament of Oncological Surgery, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum, 85-067 Bydgoszcz, Poland
| |
Collapse
|