1
|
Li M, Wang X, He W, Zhou H. Drug-tolerant persister cells in acute myeloid leukemia: pressing challenge and promising new strategies for treatment. Front Med (Lausanne) 2025; 12:1586552. [PMID: 40443513 PMCID: PMC12120853 DOI: 10.3389/fmed.2025.1586552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Acute myeloid leukemia (AML) exhibits a pronounced ability to develop drug resistance and undergo disease relapse. Recent research has noticed that resistance to treatments could substantially be attributed to drug-tolerant persister (DTP) cells, which are capable of surviving under therapeutic pressures. These are transient, reversibly dormant cells with the capability to act as a reservoir for disease relapse. DTP cells utilize diverse adaptive strategies to optimize the ecological niche, undergo metabolic reprogramming, and interact with microenvironment. The persister state of AML is established through transient cellular reprogramming, thus allowing cells to survive the initial phase of drug therapy and develop drug resistance. Our review explores the identification and phenotypic characteristics of AML DTP cells, as well as their clinical relevance. We summarize the mechanisms underlying the persistence of AML DTP cells and the molecular attributes that define the DTP state. We further address the current challenges and future prospects of DTP-targeting approaches. Understanding these features may provide critical insights into novel therapeutic strategies aimed at targeting AML DTP cells, especially in the new era of immunotherapy against AML.
Collapse
Affiliation(s)
- Meng Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjuan He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Huang M, Wu Y, Wei X, Cheng L, Fu L, Yan H, Wei W, Li B, Ru H, Mo X, Tang W, Su Z, Yan L. Trifluridine/tipiracil induces ferroptosis by targeting p53 via the p53-SLC7A11 axis in colorectal cancer 3D organoids. Cell Death Dis 2025; 16:255. [PMID: 40188162 PMCID: PMC11972347 DOI: 10.1038/s41419-025-07541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/15/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
Trifluridine/Tipiracil (FTD/TPI, TAS102) has been approved for the treatment of patients with colorectal cancer (CRC) for its promising anticancer activity enabled by its incorporation into double strands during DNA synthesis. However, the mechanisms underlying the anticancer targets of FTD/TPI remain not fully understood. Here we report our observation of the activation of ferroptosis in CRC by FTD/TPI. Mechanistically, FTD/TPI directly promotes the ubiquitination and degradation of MDM2, thereby stabilizing the p53. Nuclear accumulation of p53 subsequently downregulates SLC7A11 expression, leading to ferroptosis. Furthermore, we observed that FTD/TPI combined with sulfasalazine (SAS), a system Xc- inhibitor, works in a synergistic manner to induce ferroptosis and further inhibit the proliferation of CRC cells. Finally, we confirmed the synergistic effect of SAS and FTD/TPI on patient-derived organoids in vitro and patient-derived xenograft mouse models in vivo. Our findings are the first to reveal that FTD/TPI induces ferroptosis via the p53-SLC7A11 axis and that SAS enhances the sensitivity and therapeutic effect of FTD/TPI. These findings suggest that the synergistic effect of FTD/TPI and SAS may represent a new therapeutic strategy for patients with CRC.
Collapse
Affiliation(s)
- Maosen Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yancen Wu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiaoxia Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Linyao Cheng
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Lihua Fu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Haochao Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Wene Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Bo Li
- Liaoning Provincial Engineering Laboratory of Anti-tumor Immunity and Molecular Theranostics Technology, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Haiming Ru
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zijie Su
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Linhai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Zhang X, Ran C, Song Q, Lv G. Extracorporeal shock waves effectively suppress colorectal cancer proliferation and growth. Sci Rep 2025; 15:9769. [PMID: 40119128 PMCID: PMC11928545 DOI: 10.1038/s41598-025-94386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Shock waves are widely used to treat various diseases and have numerous medical applications. In particular, extracorporeal shock waves (ESV) can substantially inhibit tumour growth. However, the therapeutic efficacy of ESV in colorectal cancer and its underlying mechanisms are not well understood. To address this gap in our knowledge, colorectal cancer cell lines HT29 and SW620 were used to generate xenograft mouse models and examined the therapeutic effects of a stepwise increase in ESV energy on tumour growth. In vivo, 60 mJ ESV significantly delayed xenograft growth compared with 120 and 240 mJ ESV, with no impact on body weight or hepatic and renal function. Transcriptome analysis revealed that 60 mJ ESV suppressed colorectal cancer cell proliferation and induced apoptosis and ferroptosis; these findings were further confirmed by immunohistochemical staining and western blotting. The in vitro study showed that ESV mechanistically suppressed cell proliferation and induced apoptosis and ferroptosis by activating the p53 signaling pathway. In conclusion, 60 mJ ESV substantially inhibited colorectal cancer growth by activating p53 pathway-related proliferation inhibition and cell death. These findings indicate that ESV therapy is a promising therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Injury and Repair, Beijing Neurosurgical Institute, Capital Medical University, 119 Xincun Road, Fengtai District, Beijing, 100000, China.
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Guangdong, 518000, China.
| | - Chun Ran
- China Ordnance Society, 10 Chedaogou, Haidian District, Beijing, 100000, China.
| | - Qingzhi Song
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Guangdong, 518000, China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Guangdong, 518000, China
| |
Collapse
|
4
|
Shimura T, Yin C, Ma R, Zhang A, Nagai Y, Shiratori A, Ozaki H, Yamashita S, Higashi K, Sato Y, Imaoka H, Kitajima T, Kawamura M, Koike Y, Okita Y, Yoshiyama S, Ohi M, Hayashi A, Imai H, Zhang X, Okugawa Y, Toiyama Y. The prognostic importance of the negative regulators of ferroptosis, GPX4 and HSPB1, in patients with colorectal cancer. Oncol Lett 2025; 29:144. [PMID: 39850719 PMCID: PMC11755263 DOI: 10.3892/ol.2025.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
The prognostic value of negative regulators of ferroptosis in patients with colorectal cancer (CRC) has not yet been fully elucidated. The present study performed a systematic in silico identification and selection of candidate negative regulators of ferroptosis using The Cancer Genome Atlas data cohort (n=367), followed by clinical validation through immunohistochemistry of samples from patients with CRC (n=166) and further in vitro evaluation. In silico analysis identified specific light-chain subunit of the cystine/glutamate antiporter, AIFM2, NFE2L2, FTH1, GLS2, glutathione peroxidase 4 (GPX4) and heat shock protein β-1 (HSPB1) genes as possible candidates. Furthermore, patients with high expression of GPX4 or HSPB1 exhibited significantly worse overall survival (OS) compared with those with low expression (P<0.01 for both). Immunohistochemical analysis revealed that both OS and recurrence-free survival (RFS) of patients with CRC and high GPX4 or HSPB1 expression were significantly worse compared with in patients with low expression (P<0.01 for all). Furthermore, multivariate analysis showed that high GPX4 and HSPB1 expression were independent risk factors for poor oncological outcome for OS and RFS (GPX4: RFS, P=0.03; HSPB1: OS, P=0.006 and RFS, P<0.0001). Moreover, the effects of GPX4 and HSPB1 small interfering RNAs on two CRC cell lines (DLD-1 and SW480) indicated that GPX4 and HSPB1 may exhibit important roles in attenuating the cytotoxic effect of 5-fluorouracil-based chemotherapy. In conclusion, the current study confirmed that GPX4 and HSPB1 may serve as substantial prognostic- and recurrence-predictive biomarkers in patients with CRC.
Collapse
Affiliation(s)
- Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ruiya Ma
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063007, P.R. China
| | - Aiying Zhang
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuka Nagai
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Aoi Shiratori
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hana Ozaki
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shinji Yamashita
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Koki Higashi
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuki Sato
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroki Imaoka
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Shigeyuki Yoshiyama
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Akinobu Hayashi
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Hiroshi Imai
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Xueming Zhang
- Department of Surgery, Tangshan Gongren Hospital, Tangshan, Hebei 063007, P.R. China
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
- Department of Genomic Medicine, Mie University Hospital, Tsu, Mie 514-8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
5
|
Haynes J, Manogaran P. Mechanisms and Strategies to Overcome Drug Resistance in Colorectal Cancer. Int J Mol Sci 2025; 26:1988. [PMID: 40076613 PMCID: PMC11901061 DOI: 10.3390/ijms26051988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide, with a significant impact on public health. Current treatment options include surgery, chemotherapy, radiotherapy, molecular-targeted therapy, and immunotherapy. Despite advancements in these therapeutic modalities, resistance remains a significant challenge, often leading to treatment failure, poor progression-free survival, and cancer recurrence. Mechanisms of resistance in CRC are multifaceted, involving genetic mutations, epigenetic alterations, tumor heterogeneity, and the tumor microenvironment. Understanding these mechanisms at the molecular level is crucial for identifying novel therapeutic targets and developing strategies to overcome resistance. This review provides an overview of the diverse mechanisms driving drug resistance in sporadic CRC and discusses strategies currently under investigation to counteract this resistance. Several promising strategies are being explored, including targeting drug transport, key signaling pathways, DNA damage response, cell death pathways, epigenetic modifications, cancer stem cells, and the tumor microenvironment. The integration of emerging therapeutic approaches that target resistance mechanisms aims to enhance the efficacy of current CRC treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Jennifer Haynes
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA;
| | | |
Collapse
|
6
|
Yang L, Li M, Liu Y, Jiang Z, Xu S, Ding H, Gao X, Liu S, Qi L, Wang K. Draw on advantages and avoid disadvantages: CT-derived individualized radiomic signature for predicting chemo-radiotherapy sensitivity in unresectable advanced non-small cell lung cancer. J Cancer Res Clin Oncol 2024; 150:453. [PMID: 39387925 PMCID: PMC11467094 DOI: 10.1007/s00432-024-05971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Presently, the options of concurrent chemo-radiotherapy (CCR) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) are controversial and there is no reliable prediction tool to stratify poor- and good-responders. Although radiomic analysis has provided new opportunities for personalized medicine in oncological practice, the repeatability and reproducibility of radiomic features are critical challenges that hinder their widespread clinical adoption. This study aimed to develop a qualitative radiomic signature based on the within-sample rank of radiomics features, and to use this novel method to predict CCR sensitivity in LA-NSCLC, avoiding the variability of quantitative signatures to multicenter effect. METHODS We retrospectively analyzed 125 patients with stage III NSCLC who received treatment from our hospital. Radiomic features were extracted from pretreatment plain CT scans and constructed as feature pairs based on their within-sample rank. Fisher and univariate Cox analyses were performed to select feature pairs significantly associated with patients' overall survival (OS). NSCLC-Radiomic (R422) cohort including 104 NSCLC patients was used as an independent testing cohort. NSCLC-Radiogenomic (RG211) cohort with matched RNA sequencing profiles, was used for functional enrichment analysis to reveal the underlying biological mechanism reflected by the signature. RESULTS A qualitative signature, consisting of 15 radiomic feature pairs (termed as 15-RiFPS), was developed based on the Genetic Algorithm, which could optimally distinguish responder from non-responder with significantly improved OS if they received CCR treatment (log-rank P = 0.0009, HR = 13.79, 95% CIs 1.83-104.1). The performance of 15-RiFPS was validated in an independent public cohort (log-rank P = 0.0037, HR = 2.40, 95% CIs 1.30-4.40). Furthermore, the transcriptomic analyses provided biological pathways ('glutathione metabolic process', 'cellular oxidant detoxification') underlying the signature. CONCLUSIONS We developed a CT-derived 15-RiFPS, which could potentially help predict individualized therapeutic benefit of CCR in patients with LA-NSCLC. Additionally, we investigated the underlying intra-tumoral biological characteristics behind 15-RiFPS which would accelerate its clinical application. This approach could be applied to a wider range of treatments and cancer types.
Collapse
Affiliation(s)
- Liping Yang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Yixin Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Zhiyun Jiang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China
| | - Shichuan Xu
- Department of Equipment, The Second Hospital of Harbin, Harbin, People's Republic of China
| | - Hongchao Ding
- Department of Physical Diagnosis, Heilongjiang Provincial Hospital, Harbin, People's Republic of China
| | - Xing Gao
- Department of Physical Diagnosis, Heilongjiang Provincial Hospital, Harbin, People's Republic of China
| | - Shilong Liu
- Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Kezheng Wang
- PET-CT/MR Department, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China.
| |
Collapse
|
7
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
8
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
9
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Liu M, Xu C, Yang H, Jiang Q, Chen G, Wang W, Shao T, Deng T, Yuan F, Xie P, Zhou H. Pro-oncogene FBI-1 inhibits the ferroptosis of prostate carcinoma PC-3 cells via the microRNA-324-3p/GPX4 axis. J Cancer 2024; 15:4097-4112. [PMID: 38947389 PMCID: PMC11212100 DOI: 10.7150/jca.96306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 07/02/2024] Open
Abstract
Ferroptosis has been characterized as non-apoptotic programmed cell death and is considered a novel strategy for antitumor treatment. The factor that binds to inducer of short transcripts-1 (FBI-1) is an important proto-oncogene playing multiple roles in human malignancies and the development of resistance to therapy. However, the roles of FBI-1 in ferroptosis of endocrine independent prostate carcinoma are still unknown. The results of this study showed that FBI-1 inhibited the ferroptosis of prostate carcinoma PC-3 cells (a typical endocrine-independent prostate carcinoma cell line) via the miR-324-3p/glutathione peroxidase 4 (miR-324-3p/GPX4) axis. Overexpression of FBI-1 enhanced the expression levels of GPX4. In contrast, knockdown of FBI-1 decreased the expression of GPX4 and induced the ferroptosis of PC-3 cells. The miR-324-3p decreased the expression of GPX4 by targeting the 3'-untranslated region of GPX4 to induce ferroptosis. Notably, FBI-1 increased the expression of GPX4 by repressing the levels of miR-324-3p. The transcription of miR-324-3p was mediated by specificity protein 1 (SP1), and FBI-1 repressed the expression of miR-324-3p by repressing the activation of SP1. In clinical specimens, the endogenous levels of FBI-1 were positively associated with Glutathione Peroxidase 4 (GPX4) and negatively related with the expression of miR-324-3p. Therefore, the results indicated that the miR-324-3p/GPX4 axis participates in the FBI-1-mediated ferroptosis of prostate carcinoma cells.
Collapse
Affiliation(s)
- Mingsheng Liu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Chenxiang Xu
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Hua Yang
- Department of the Medical Oncology / the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy; the Affiliated Hospital of Hebei University; Baoding City 071000, Hebei province, People's Republic of China
| | - Qiyu Jiang
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Guanyu Chen
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Wei Wang
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Tao Shao
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Tibin Deng
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Fei Yuan
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Pingbo Xie
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| | - Hongqing Zhou
- Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing City 655000, Yunnan Province, People's Republic of China
| |
Collapse
|
11
|
Zhang Y, Xie J. Targeting ferroptosis regulators by natural products in colorectal cancer. Front Pharmacol 2024; 15:1374722. [PMID: 38860170 PMCID: PMC11163120 DOI: 10.3389/fphar.2024.1374722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant global health challenge, ranking as the third most diagnosed cancer and the second leading cause of cancer-related deaths. Despite advancements in treatment, challenges such as delayed diagnosis, multidrug resistance, and limited therapeutic effectiveness persist, emphasizing the need for innovative approaches. This review explores the potential of natural products, nutraceuticals, and phytochemicals for targeting ferroptosis-related regulators as a novel strategy in CRC. Ferroptosis, a form of regulated cell death characterized by iron-dependent lethal lipid peroxide accumulation, holds substantial importance in CRC progression and therapy resistance. Natural products, known for their diverse bioactive effects and favorable safety profiles, emerge as promising candidates to induce ferroptosis in CRC cells. Exploring amino acid, iron, lipid metabolism regulators, and oxidative stress regulators reveals promising avenues for inducing cell death in CRC. This comprehensive review provides insights into the multifaceted effects of natural products on proteins integral to ferroptosis regulation, including GPX4, SLC7A11, ACSL4, NCOA4, and HO-1. By elucidating the intricate mechanisms through which natural products modulate these proteins, this review lays the foundation for a promising therapeutic strategy in CRC.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
12
|
Wilczak J, Prostek A, Dziendzikowska K, Gajewska M, Kopiasz Ł, Harasym J, Oczkowski M, Gromadzka-Ostrowska J. Oat Beta-Glucan as a Metabolic Regulator in Early Stage of Colorectal Cancer-A Model Study on Azoxymethane-Treated Rats. Int J Mol Sci 2024; 25:4635. [PMID: 38731854 PMCID: PMC11083532 DOI: 10.3390/ijms25094635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Factors that reduce the risk of developing colorectal cancer include biologically active substances. In our previous research, we demonstrated the anti-inflammatory, immunomodulatory, and antioxidant effects of oat beta-glucans in gastrointestinal disease models. The aim of this study was to investigate the effect of an 8-week consumption of a diet supplemented with low-molar-mass oat beta-glucan in two doses on the antioxidant potential, inflammatory parameters, and colonic metabolomic profile in azoxymethane(AOM)-induced early-stage colorectal cancer in the large intestine wall of rats. The results showed a statistically significant effect of AOM leading to the development of neoplastic changes in the colon. Consumption of beta-glucans induced changes in colonic antioxidant potential parameters, including an increase in total antioxidant status, a decrease in the superoxide dismutase (SOD) activity, and a reduction in thiobarbituric acid reactive substance (TBARS) concentration. In addition, beta-glucans decreased the levels of pro-inflammatory interleukins (IL-1α, IL-1β, IL-12) and C-reactive protein (CRP) while increasing the concentration of IL-10. Metabolomic studies confirmed the efficacy of oat beta-glucans in the AOM-induced early-stage colon cancer model by increasing the levels of metabolites involved in metabolic pathways, such as amino acids, purine, biotin, and folate. In conclusion, these results suggest a wide range of mechanisms involved in altering colonic metabolism during the early stage of carcinogenesis and a strong influence of low-molar-mass oat beta-glucan, administered as dietary supplement, in modulating these mechanisms.
Collapse
Affiliation(s)
- Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.P.); (M.G.)
| | - Adam Prostek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.P.); (M.G.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (Ł.K.); (M.O.); (J.G.-O.)
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.P.); (M.G.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (Ł.K.); (M.O.); (J.G.-O.)
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland;
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (Ł.K.); (M.O.); (J.G.-O.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (K.D.); (Ł.K.); (M.O.); (J.G.-O.)
| |
Collapse
|
13
|
Radu P, Zurzu M, Tigora A, Paic V, Bratucu M, Garofil D, Surlin V, Munteanu AC, Coman IS, Popa F, Strambu V, Ramboiu S. The Impact of Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:4140. [PMID: 38673727 PMCID: PMC11050141 DOI: 10.3390/ijms25084140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite incessant research, colorectal cancer (CRC) is still one of the most common causes of fatality in both men and women worldwide. Over time, advancements in medical treatments have notably enhanced the survival rates of patients with colorectal cancer. Managing metastatic CRC involves a complex tradeoff between the potential benefits and adverse effects of treatment, considering factors like disease progression, treatment toxicity, drug resistance, and the overall impact on the patient's quality of life. An increasing body of evidence highlights the significance of the cancer stem cell (CSC) concept, proposing that CSCs occupy a central role in triggering cancer. CSCs have been a focal point of extensive research in a variety of cancer types, including CRC. Colorectal cancer stem cells (CCSCs) play a crucial role in tumor initiation, metastasis, and therapy resistance, making them potential treatment targets. Various methods exist for isolating CCSCs, and understanding the mechanisms of drug resistance associated with them is crucial. This paper offers an overview of the current body of research pertaining to the comprehension of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Petru Radu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mihai Zurzu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Anca Tigora
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Vlad Paic
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mircea Bratucu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Dragos Garofil
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Alexandru Claudiu Munteanu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Ionut Simion Coman
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
- General Surgery Department, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni Road, 041915 Bucharest, Romania
| | - Florian Popa
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Victor Strambu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Sandu Ramboiu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| |
Collapse
|
14
|
Jiang X, Peng Q, Peng M, Oyang L, Wang H, Liu Q, Xu X, Wu N, Tan S, Yang W, Han Y, Lin J, Xia L, Tang Y, Luo X, Dai J, Zhou Y, Liao Q. Cellular metabolism: A key player in cancer ferroptosis. Cancer Commun (Lond) 2024; 44:185-204. [PMID: 38217522 PMCID: PMC10876208 DOI: 10.1002/cac2.12519] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Cellular metabolism is the fundamental process by which cells maintain growth and self-renewal. It produces energy, furnishes raw materials, and intermediates for biomolecule synthesis, and modulates enzyme activity to sustain normal cellular functions. Cellular metabolism is the foundation of cellular life processes and plays a regulatory role in various biological functions, including programmed cell death. Ferroptosis is a recently discovered form of iron-dependent programmed cell death. The inhibition of ferroptosis plays a crucial role in tumorigenesis and tumor progression. However, the role of cellular metabolism, particularly glucose and amino acid metabolism, in cancer ferroptosis is not well understood. Here, we reviewed glucose, lipid, amino acid, iron and selenium metabolism involvement in cancer cell ferroptosis to elucidate the impact of different metabolic pathways on this process. Additionally, we provided a detailed overview of agents used to induce cancer ferroptosis. We explained that the metabolism of tumor cells plays a crucial role in maintaining intracellular redox homeostasis and that disrupting the normal metabolic processes in these cells renders them more susceptible to iron-induced cell death, resulting in enhanced tumor cell killing. The combination of ferroptosis inducers and cellular metabolism inhibitors may be a novel approach to future cancer therapy and an important strategy to advance the development of treatments.
Collapse
Affiliation(s)
- Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Honghan Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Hengyang Medical School, University of South China, Hengyang, Hunan, P. R. China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Jie Dai
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Department of Head and Neck Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P. R. China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, P. R. China
| |
Collapse
|
15
|
Zhao J, Zang F, Huo X, Zheng S. Novel approaches targeting ferroptosis in treatment of glioma. Front Neurol 2023; 14:1292160. [PMID: 38020609 PMCID: PMC10659054 DOI: 10.3389/fneur.2023.1292160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma is a malignant brain tumor with a high mortality rate; hence novel treatment approaches are being explored to improve patient outcomes. Ferroptosis, a newly described form of regulated cell death, is emerging as a potential therapeutic target in glioma. Ferroptosis is characterized by the accumulation of lipid peroxides due to a loss of intracellular antioxidant systems represented by the depletion of glutathione and decreased activity of glutathione peroxidase 4 (GPX4). Since glioma cells have a high demand for iron and lipid metabolism, modulation of ferroptosis may represent a promising therapeutic approach for this malignancy. Recent studies indicate that ferroptosis inducers like erastin and RSL3 display potent anticancer activity in a glioma model. In addition, therapeutic strategies, including GPX4 targeting, lipid metabolism modulation, inhibition of amino acid transporters, and ferroptosis targeting natural compounds, have shown positive results in preclinical studies. This review will provide an overview of the functions of ferroptosis in glioma and its potential as a suitable target for glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Shengzhe Zheng
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanbian Korean Autonomous Prefecture, Jilin, China
| |
Collapse
|
16
|
Abstract
Sepsis is triggered by microbial infection, injury, or even major surgery. Both innate and adaptive immune systems are involved in its pathogenesis. Cytoplasmic presence of DNA or RNA of the invading organisms or damaged nuclear material (in the form of micronucleus in the cytoplasm) in the host cell need to be eliminated by various nucleases; failure to do so leads to the triggering of inflammation by the cellular cGAS-STING system, which induces the release of IL-6, TNF-α, and IFNs. These cytokines activate phospholipase A2 (PLA2), leading to the release of polyunsaturated fatty acids (PUFAs), gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), which form precursors to various pro- and anti-inflammatory eicosanoids. On the other hand, corticosteroids inhibit PLA2 activity and, thus, suppress the release of GLA, AA, EPA, and DHA. PUFAs and their metabolites have a negative regulatory action on the cGAS-STING pathway and, thus, suppress the inflammatory process and initiate inflammation resolution. Pro-inflammatory cytokines and corticosteroids (corticosteroids > IL-6, TNF-α) suppress desaturases, which results in decreased formation of GLA, AA, and other PUFAs from the dietary essential fatty acids (EFAs). A deficiency of GLA, AA, EPA, and DHA results in decreased production of anti-inflammatory eicosanoids and failure to suppress the cGAS-STING system. This results in the continuation of the inflammatory process. Thus, altered concentrations of PUFAs and their metabolites, and failure to suppress the cGAS-STING system at an appropriate time, leads to the onset of sepsis. Similar abnormalities are also seen in radiation-induced inflammation. These results imply that timely administration of GLA, AA, EPA, and DHA, in combination with corticosteroids and anti-IL-6 and anti-TNF-α antibodies, may be of benefit in mitigating radiation-induced damage and sepsis.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA
| |
Collapse
|
17
|
Yang Y, Gu H, Zhang K, Guo Z, Wang X, Wei Q, Weng L, Han X, Lv Y, Cao M, Cao P, Huang C, Qiu Z. Exosomal ACADM sensitizes gemcitabine-resistance through modulating fatty acid metabolism and ferroptosis in pancreatic cancer. BMC Cancer 2023; 23:789. [PMID: 37612627 PMCID: PMC10463774 DOI: 10.1186/s12885-023-11239-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
This study aimed to evaluate the potential of exosomes from cancer cells to predict chemoresistance in pancreatic cancer (PC) and explore the molecular mechanisms through RNA-sequencing and mass spectrometry. We sought to understand the connection between the exosomal Medium-chain acyl-CoA dehydrogenase (ACADM) level and the reaction to gemcitabine in vivo and in patients with PC. We employed loss-of-function, gain-of-function, metabolome mass spectrometry, and xenograft models to investigate the effect of exosomal ACADM in chemoresistance in PC. Our results showed that the molecules involved in lipid metabolism in exosomes vary between PC cells with different gemcitabine sensitivity. Exosomal ACADM (Exo-ACADM) was strongly correlated with gemcitabine sensitivity in vivo, which can be used as a predictor for postoperative gemcitabine chemosensitivity in pancreatic patients. Moreover, ACADM was found to regulate the gemcitabine response by affecting ferroptosis through Glutathione peroxidase 4 (GPX4) and mevalonate pathways. It was also observed that ACADM increased the consumption of unsaturated fatty acids and decreased intracellular lipid peroxides and reactive oxygen species (ROS) levels. In conclusion, this research suggests that Exo-ACADM may be a viable biomarker for predicting the responsiveness of patients to chemotherapy.
Collapse
Affiliation(s)
- Yuhan Yang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaofeng Wang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingyun Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Ling Weng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Xuan Han
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Yan Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
18
|
Tsai KY, Wei PL, Lee CC, Makondi PT, Chen HA, Chang YY, Liu DZ, Huang CY, Chang YJ. 2,3,5,4'-Tetrahydroxystilbene (TG1), a Novel Compound Derived from 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), Inhibits Colorectal Cancer Progression by Inducing Ferroptosis, Apoptosis, and Autophagy. Biomedicines 2023; 11:1798. [PMID: 37509438 PMCID: PMC10376355 DOI: 10.3390/biomedicines11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the deadliest cancers worldwide and long-term survival is not guaranteed in metastatic disease despite current multidisciplinary therapies. A new compound 2,3,5,4'-Tetrahydroxystilbene (TG1), derived from THSG (2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside), has been developed, and its anticancer ability against CRC is verified in this study. METHODS HCT116, HT-29, and DLD-1 were treated with TG1 and the IC50 was measured using a sulforhodamine B assay. A Xenograft mouse model was used to monitor tumor growth. Apoptosis and autophagy, induced by TG1 in CRC cells, were examined. RNA-sequencing analysis of CRC cells treated with TG1 was performed to discover underlying pathways and mechanisms. RESULTS The results demonstrated that treatment with TG1 inhibited CRC proliferation in vitro and in vivo and induced apoptotic cell death, which was confirmed by Annexin V-FITC/PI staining and Western blotting. Additionally, TG1 treatment increased the level of autophagy in cells. RNA-sequencing and GSEA analyses revealed that TG1 was associated with MYC and the induction of ferroptosis. Furthermore, the ferroptosis inhibitor Bardoxolone abrogated the cytotoxic effect of TG1 in CRC cells, indicating that ferroptosis played a crucial role in TG1-induced cytotoxicity. CONCLUSIONS These findings suggest that TG1 might be a potential and potent compound for clinical use in the treatment of CRC by inhibiting proliferation and inducing ferroptosis through the MYC pathway.
Collapse
Affiliation(s)
- Kuei-Yen Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Hsin-An Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Yao-Yuan Chang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Medical and Pharmaceutical Industry Technology and Development Center, New Taipei 24888, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
19
|
Zhang X, Ma Y, Lv G, Wang H. Ferroptosis as a therapeutic target for inflammation-related intestinal diseases. Front Pharmacol 2023; 14:1095366. [PMID: 36713828 PMCID: PMC9880170 DOI: 10.3389/fphar.2023.1095366] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death characterized by reactive oxygen species-induced lipid peroxidation and resultant membrane damage. Recent research has elucidated the mechanism of ferroptosis and investigated the relationship between ferroptosis and various diseases, including degenerative diseases, cancer, and inflammation. Ferroptosis is associated with inflammation-related intestinal diseases such as colitis and colitis-associated cancer. New insights into the role of ferroptosis in the pathogenesis of inflammation-related gut diseases have suggested novel therapeutic targets. In this review, we summarize current information on the molecular mechanisms of ferroptosis and describe its emerging role and therapeutic potential in inflammation-related intestinal diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China,Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China,*Correspondence: Hongying Wang, ; Guoqing Lv,
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Hongying Wang, ; Guoqing Lv,
| |
Collapse
|
20
|
Insights on Ferroptosis and Colorectal Cancer: Progress and Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010243. [PMID: 36615434 PMCID: PMC9821926 DOI: 10.3390/molecules28010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Patients with advanced-stage or treatment-resistant colorectal cancer (CRC) benefit less from traditional therapies; hence, new therapeutic strategies may help improve the treatment response and prognosis of these patients. Ferroptosis is an iron-dependent type of regulated cell death characterized by the accumulation of lipid reactive oxygen species (ROS), distinct from other types of regulated cell death. CRC cells, especially those with drug-resistant properties, are characterized by high iron levels and ROS. This indicates that the induction of ferroptosis in these cells may become a new therapeutic approach for CRC, particularly for eradicating CRC resistant to traditional therapies. Recent studies have demonstrated the mechanisms and pathways that trigger or inhibit ferroptosis in CRC, and many regulatory molecules and pathways have been identified. Here, we review the current research progress on the mechanism of ferroptosis, new molecules that mediate ferroptosis, including coding and non-coding RNA; novel inducers and inhibitors of ferroptosis, which are mainly small-molecule compounds; and newly designed nanoparticles that increase the sensitivity of cells to ferroptosis. Finally, the gene signatures and clusters that have predictive value on CRC are summarized.
Collapse
|
21
|
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol 2022; 13:910292. [PMID: 36105219 PMCID: PMC9465090 DOI: 10.3389/fphar.2022.910292] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc−), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc−/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc−/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc−/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Collapse
Affiliation(s)
- Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
- *Correspondence: Li-Chen Gao,
| |
Collapse
|