1
|
Alshahrani M, Parikh V, Foley B, Hu G, Verkhivker G. Probing binding and allosteric mechanisms of the KRAS interactions with monobodies and affimer proteins: ensemble-based mutational profiling and thermodynamic analysis of binding energetics and allostery reveal diversity of functional hotspots and cryptic pockets linked by conserved communication network. Phys Chem Chem Phys 2025; 27:11242-11263. [PMID: 40384021 DOI: 10.1039/d5cp00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
KRAS, a historically "undruggable" oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. Revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the "undruggable" reputation of KRAS.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Vedant Parikh
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Brandon Foley
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Guang Hu
- Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
2
|
Plaper T, Knez Štibler U, Jerala R. Synthetic Biology for Designing Allostery and Its Potential Biomedical Applications. J Mol Biol 2025:169225. [PMID: 40409706 DOI: 10.1016/j.jmb.2025.169225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Allosteric regulation of protein function, where a perturbation at one site induces a conformational shift or alters dynamics at a distal functional site, plays a key role in numerous biological processes. The ability to introduce allostery using synthetic biology principles holds significant potential both for biomedical and biotechnological applications, and for advancing our understanding of natural allostery. By customizing target proteins for sensing specific chemical or physical signals, including ligand binding and environmental cues, we aim to allosterically modulate the function of a target protein depending on the selected triggers. This approach, unlike active-site targeting, offers greater specificity and selectivity and can allosterically couple diverse physiological processes. Synthetic biology strategies have been developed recently for designed allosteric protein regulation, including the design of allosteric modulators such as domain insertion, generation of de novo allosteric protein switches, and application of engineered allosteric mechanisms to control cellular functions. We examine the application of artificial intelligence (AI)-based generative protein design and other important milestones, challenges and opportunities in this field, highlighting how these approaches could be applied for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Urška Knez Štibler
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Interdisciplinary Doctoral Study of Biomedicine, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Alshahrani M, Parikh V, Foley B, Hu G, Verkhivker G. Atomistic Profiling of KRAS Interactions with Monobodies and Affimer Proteins Through Ensemble-Based Mutational Scanning Unveils Conserved Residue Networks Linking Cryptic Pockets and Regulating Mechanisms of Binding, Specificity and Allostery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642708. [PMID: 40161650 PMCID: PMC11952430 DOI: 10.1101/2025.03.11.642708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
KRAS, a historically "undruggable" oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the "undruggable" reputation of KRAS.
Collapse
|
4
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Li N, Liu CF, Zhang W, Rao GW. A New Dawn for Targeted Cancer Therapy: Small Molecule Covalent Binding Inhibitor Targeting K-Ras (G12C). Curr Med Chem 2025; 32:647-677. [PMID: 37936461 DOI: 10.2174/0109298673258913231019113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
K-Ras is a frequently mutated oncogene in human malignancies, and the development of inhibitors targeting various oncogenic K-Ras mutant proteins is a major challenge in targeted cancer therapy, especially K-Ras(G12C) is the most common mutant, which occurs in pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and other highly prevalent malignancies. In recent years, significant progress has been made in developing small molecule covalent inhibitors targeting K-Ras(G12C), thanks to the production of nucleophilic cysteine by the G12C mutant, breaking the "spell" that K-Ras protein cannot be used as a drug target. With the successful launch of sotorasib and adagrasib, the development of small molecule inhibitors targeting various K-Ras mutants has continued to gain momentum. In recent years, with the popularization of highly sensitive surface plasmon resonance (SPR) technology, fragment-based drug design strategies have shown great potential in the development of small molecule inhibitors targeting K-Ras(G12C), but with the increasing number of clinically reported acquired drug resistance, addressing inhibitor resistance has gradually become the focus of this field, indirectly indicating that such small molecule inhibitors still the potential for the development of these small molecule inhibitors are also indirectly indicated. This paper traces the development of small molecule covalent inhibitors targeting K-Ras(G12C), highlighting and analyzing the structural evolution and optimization process of each series of inhibitors and the previous inhibitor design methods and strategies, as well as their common problems and general solutions, in order to provide inspiration and help to the subsequent researchers.
Collapse
Affiliation(s)
- Na Li
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
6
|
Lokhandwala J, Smalley TB, Tran TH. Structural perspectives on recent breakthrough efforts toward direct drugging of RAS and acquired resistance. Front Oncol 2024; 14:1394702. [PMID: 38841166 PMCID: PMC11150659 DOI: 10.3389/fonc.2024.1394702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
The Kirsten rat sarcoma viral oncoprotein homolog (KRAS) is currently a primary focus of oncologists and translational scientists, driven by exciting results with KRAS-targeted therapies for non-small cell lung cancer (NSCLC) patients. While KRAS mutations continue to drive high cancer diagnosis and death, researchers have developed unique strategies to target KRAS variations. Having been investigated over the past 40 years and considered "undruggable" due to the lack of pharmacological binding pockets, recent breakthroughs and accelerated FDA approval of the first covalent inhibitors targeting KRASG12C, have largely sparked further drug development. Small molecule development has targeted the previously identified primary location alterations such as G12, G13, Q61, and expanded to address the emerging secondary mutations and acquired resistance. Of interest, the non-covalent KRASG12D targeting inhibitor MRTX-1133 has shown promising results in humanized pancreatic cancer mouse models and is seemingly making its way from bench to bedside. While this manuscript was under review a novel class of first covalent inhibitors specific for G12D was published, These so-called malolactones can crosslink both GDP and GTP bound forms of G12D. Inhibition of the latter state suppressed downstream signaling and cancer cell proliferation in vitro and in mouse xenografts. Moreover, a non-covalent pan-KRAS inhibitor, BI-2865, reduced tumor proliferation in cell lines and mouse models. Finally, the next generation of KRAS mutant-specific and pan-RAS tri-complex inhibitors have revolutionized RAS drug discovery. This review will give a structural biology perspective on the current generation of KRAS inhibitors through the lens of emerging secondary mutations and acquired resistance.
Collapse
Affiliation(s)
- Jameela Lokhandwala
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tracess B. Smalley
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Timothy H. Tran
- Chemical Biology Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
7
|
Jiang Z, Li Y, Zhou X, Wen J, Zheng P, Zhu W. Research progress on small molecule inhibitors targeting KRAS G12C with acrylamide structure and the strategies for solving KRAS inhibitor resistance. Bioorg Med Chem 2024; 100:117627. [PMID: 38310752 DOI: 10.1016/j.bmc.2024.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
KRAS (Kirsten-RAS) is a highly mutated gene in the RAS (rat sarcoma) gene family that acts as a critical switch in intracellular signaling pathways, regulating cell proliferation, differentiation, and survival. The continuous activation of KRAS protein resulting from mutations leads to the activation of multiple downstream signaling pathways, inducing the development of malignant tumors. Despite the significant role of KRAS in tumorigenesis, targeted drugs against KRAS gene mutations have failed, and KRAS was once considered an undruggable target. The development of KRAS G12C mutant conformational modulators and the introduction of Sotorasib (R&D code: AMG510) have been a breakthrough in this field, with its remarkable clinical outcomes. Consequently, there is now a great number of KRAS G12C mutations. Patent applications for mutant GTPase KRAS G12C inhibitors, which are said to be covalently modified by cysteine codon 12, have been submitted since 2014. This review classifies KRAS G12C inhibitors based on their chemical structure and evaluates their biological properties. Additionally, it discusses the obstacles encountered in KRAS inhibitor research and the corresponding solutions.
Collapse
Affiliation(s)
- Zhiyan Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Xin Zhou
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jie Wen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
8
|
Rosen JC, Sacher A, Tsao MS. Direct GDP-KRAS G12C inhibitors and mechanisms of resistance: the tip of the iceberg. Ther Adv Med Oncol 2023; 15:17588359231160141. [PMID: 36950276 PMCID: PMC10026147 DOI: 10.1177/17588359231160141] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog mutations are observed in 25% of lung adenocarcinoma and 40% of these are G12C mutations. Historically, no approved targeted agents were available for patients with any KRAS mutation, and response rates to standard-of-care therapies were suboptimal. Newly developed inhibitors directed toward KRASG12C have been successful in clinical trials with overall response rates ranging between 32% and 46%, and two FDA approvals were granted in May 2021 and December 2022 as second-line or later monotherapies. However, rapid tumor resistance complicates their use as a monotherapy. With the rapid development of this novel class of inhibitors, it is important to discern the different types of tumor resistance that may arise and how each can differently contribute to tumor growth and survival. G12C inhibitor resistance is under investigation and combinations of therapies with G12C inhibitors have been proposed. Much of this insight is gleaned from preclinical investigations, as our knowledge of clinical resistance is in its infancy. In this review, we summarize the preclinical development of KRASG12C inhibitors, their clinical evaluations, different types of resistance mechanisms to these compounds, and ways of overcoming them. Finally, we underscore the importance of basic and translational investigations of these molecules in a landscape where their clinical evaluations garner the most attention, and we set the stage for what is to come.
Collapse
Affiliation(s)
- Joshua C. Rosen
- Princess Margaret Hospital Cancer Centre,
University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and
Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto,
ON, Canada
| | - Adrian Sacher
- Princess Margaret Hospital Cancer Centre,
University Health Network, Toronto, ON, Canada
- Division of Medical Oncology, Department of
Medicine, Princess Margaret Cancer Centre, Temerty Faculty of Medicine,
University of Toronto, Toronto, ON, Canada
- Department of Immunology, Temerty Faculty of
Medicine, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
9
|
Li X, Li B, Li J, Yang M, Bai Y, Chen K, Chen Z, Mao N. Mechanistic insights into the role of calcium in the allosteric regulation of the calmodulin-regulated death-associated protein kinase. Front Mol Biosci 2022; 9:1104942. [PMID: 36601586 PMCID: PMC9806222 DOI: 10.3389/fmolb.2022.1104942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Calcium (Ca2+) signaling plays an important role in the regulation of many cellular functions. Ca2+-binding protein calmodulin (CaM) serves as a primary effector of calcium function. Ca2+/CaM binds to the death-associated protein kinase 1 (DAPK1) to regulate intracellular signaling pathways. However, the mechanism underlying the influence of Ca2+ on the conformational dynamics of the DAPK1-CaM interactions is still unclear. Here, we performed large-scale molecular dynamics (MD) simulations of the DAPK1-CaM complex in the Ca2+-bound and-unbound states to reveal the importance of Ca2+. MD simulations revealed that removal of Ca2+ increased the anti-correlated inter-domain motions between DAPK1 and CaM, which weakened the DAPK1-CaM interactions. Binding free energy calculations validated the decreased DAPK1-CaM interactions in the Ca2+-unbound state. Structural analysis further revealed that Ca2+ removal caused the significant conformational changes at the DAPK1-CaM interface, especially the helices α1, α2, α4, α6, and α7 from the CaM and the basic loop and the phosphate-binding loop from the DAPK1. These results may be useful to understand the biological role of Ca2+ in physiological processes.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bo Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jun Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingyuan Yang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yushu Bai
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| | - Kai Chen
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| | - Ningfang Mao
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yushu Bai, ; Kai Chen, ; Ziqiang Chen, ; Ningfang Mao,
| |
Collapse
|
10
|
Zhang H, Ni D, Fan J, Li M, Zhang J, Hua C, Nussinov R, Lu S. Markov State Models and Molecular Dynamics Simulations Reveal the Conformational Transition of the Intrinsically Disordered Hypervariable Region of K-Ras4B to the Ordered Conformation. J Chem Inf Model 2022; 62:4222-4231. [PMID: 35994329 DOI: 10.1021/acs.jcim.2c00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
K-Ras4B, the most frequently mutated Ras isoform in human tumors, plays a vital part in cell growth, differentiation, and survival. Its tail, the C-terminal hypervariable region (HVR), is involved in anchoring K-Ras4B at the cellular plasma membrane and in isoform-specific protein-protein interactions and signaling. In the inactive guanosine diphosphate-bound state, the intrinsically disordered HVR interacts with the catalytic domain at the effector-binding region, rendering K-Ras4B in its autoinhibited state. Activation releases the HVR from the catalytic domain, with its ensemble favoring an ordered α-helical structure. The large-scale conformational transition of the HVR from the intrinsically disordered to the ordered conformation remains poorly understood. Here, we deploy a computational scheme that integrates a transition path-generation algorithm, extensive molecular dynamics simulation, and Markov state model analysis to investigate the conformational landscape of the HVR transition pathway. Our findings reveal a stepwise pathway for the HVR transition and uncover several key conformational substates along the transition pathway. Importantly, key interactions between the HVR and the catalytic domain are unraveled, highlighting the pathogenesis of K-Ras4B mild mutations in several congenital developmental anomaly syndromes. Together, these findings provide a deeper understanding of the HVR transition mechanism and the regulation of K-Ras4B activity at an atomic level.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Minyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chen Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.,Medicinal Chemistry and Bioinformatics Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|