1
|
Webster BR, Gopal N, Ball MW. Tumorigenesis Mechanisms Found in Hereditary Renal Cell Carcinoma: A Review. Genes (Basel) 2022; 13:2122. [PMID: 36421797 PMCID: PMC9690265 DOI: 10.3390/genes13112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma is a heterogenous cancer composed of an increasing number of unique subtypes each with their own cellular and tumor behavior. The study of hereditary renal cell carcinoma, which composes just 5% of all types of tumor cases, has allowed for the elucidation of subtype-specific tumorigenesis mechanisms that can also be applied to their sporadic counterparts. This review will focus on the major forms of hereditary renal cell carcinoma and the genetic alterations contributing to their tumorigenesis, including von Hippel Lindau syndrome, Hereditary Papillary Renal Cell Carcinoma, Succinate Dehydrogenase-Deficient Renal Cell Carcinoma, Hereditary Leiomyomatosis and Renal Cell Carcinoma, BRCA Associated Protein 1 Tumor Predisposition Syndrome, Tuberous Sclerosis, Birt-Hogg-Dubé Syndrome and Translocation RCC. The mechanisms for tumorigenesis described in this review are beginning to be exploited via the utilization of novel targets to treat renal cell carcinoma in a subtype-specific fashion.
Collapse
Affiliation(s)
| | | | - Mark W. Ball
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Zhang K, Yang W, Ma K, Qiu J, Li L, Xu Y, Zhang Z, Yu C, Zhou J, Gong Y, Cai L, Gong K. Genotype–phenotype correlations and clinical outcomes of patients with von Hippel-Lindau disease with large deletions. J Med Genet 2022; 60:477-483. [PMID: 37080588 DOI: 10.1136/jmg-2022-108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
BackgroundApproximately 20%–40% of patients with von Hippel-Lindau (VHL) disease, an autosomal dominant hereditary disease, exhibit large deletions (LDs). Few studies have focused on this population. Hence, we aimed to elucidate the genotype–phenotype correlations and clinical outcomes in VHL patients with LDs.MethodsIn this retrospective study, we included 119 patients with VHL disease from 50 unrelated families in whom LDs were detected using traditional and next-generation sequencing methods. Other germline mutations were confirmed by Sanger sequencing. Genotype–phenotype correlations and survival were analysed in different groups using Kaplan-Meier and Cox regression. We also evaluated therapeutic response to tyrosine kinase inhibitor (TKI) therapy.ResultsThe overall penetrance of patients aged <60 was 95.2%. Two VHL patients with LDs also carried CHEK2 and FLCN germline mutations. An earlier age of onset of retinal haemangioblastoma was observed in the next generation. Patients with exon 2 deletion of VHL had an earlier onset age of renal cell carcinoma and pancreatic lesions. The risk of renal cell carcinoma was lower in VHL patients with LDs and a BRK1 deletion. The group with earlier age of onset received poorer prognosis. Four of eight (50%) patients showed partial response to TKI therapy.ConclusionThe number of generations and the status of exon 2 could affect age of onset of VHL-related manifestations. Onset age was an independent risk factor for overall survival. TKI therapy was effective in VHL patients with LDs. Our findings would further support clinical surveillance and decision-making processes.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Kaifang Ma
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Jianhui Qiu
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Lei Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Chaojian Yu
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
| | - Lin Cai
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Institute of Urology, Peking University, Beijing, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing, China
| |
Collapse
|