1
|
Parhira S, Simanurak O, Pansooksan K, Somran J, Wangteeraprasert A, Jiang Z, Bai L, Nangngam P, Pekthong D, Srisawang P. Cerbera odollam fruit extracts enhance anti-cancer activity of sorafenib in HCT116 and HepG2 cells. CHINESE HERBAL MEDICINES 2025; 17:108-126. [PMID: 39949813 PMCID: PMC11814254 DOI: 10.1016/j.chmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Objective While higher therapeutic doses of toxic cardiac glycosides derived from Cerbera odollam are frequently employed in cases of suicide or homicide, ongoing research is investigating the potential anticancer properties of low-concentration extracts obtained from the fruits of C. odollam. The present study aimed to determine the enhanced anticancer effects and minimize potential side effects of combining extracts from C. odollam fruits from Thailand with sorafenib against HCT116 and HepG2 cells. Methods The dried powder of fresh green fruits of C. odollam was fractionated, and its phytochemical contents, including total cardiac glycosides, phenolics, flavonoids, and triterpenoids, were quantified. The cytotoxic effects of these fractions were evaluated against HCT116 and HepG2 cells using the MTT assay. The fractions showing the most significant response in HCT116 and HepG2 cells were subsequently combined with sorafenib to examine their synergistic effects. Apoptosis induction, cell cycle progression, and mitochondrial membrane potential (MMP) were then assessed. The underlying mechanism of the apoptotic effect was further investigated by analyzing reactive oxygen species (ROS) generation and the expression levels of antioxidant proteins. Results Phytochemical analysis showed that C. odollam-ethyl acetate fraction (COEtOAc) was rich in cardiac glycosides, phenolics, and flavonoids, while the dichloromethane fraction (CODCM) contained high levels of triterpenoids and saponins. Following 24 h treatment, HCT116 showed the most significant response to COEtOAc, while HepG2 responded well to CODCM with IC50 values of (42.04 ± 16.94) μg/mL and (123.75 ± 14.21) μg/mL, respectively. Consequently, COEtOAc (20 μg/mL) or CODCM (30 μg/mL), both administered at sub-IC50 concentrations, were combined with sorafenib at 6 μmol/L for HCT116 cells and 2 μmol/L for HepG2 cells, incubated for 24 h. This combination resulted in a significant suppression in cell viability by approximately 50%. The combination of treatments markedly enhanced apoptosis, diminished MMP, and triggered G0/G1 phase cell cycle arrest compared to the effects of each treatment administered individually. Concurrently, increased formation of ROS and decreased expression of the antioxidant enzymes superoxide dismutase 2 and catalase supported the proposed mechanism of apoptosis induction by the combination treatment. Importantly, the anticancer effect demonstrated a specific targeted action with a favorable safety profile, as evidenced by HFF-1 cells displaying IC50 values 2-3 times higher than those of the cancer cells. Conclusion Utilizing sub-IC50 concentrations of COEtOAc or CODCM in combination with sorafenib can enhance targeted anticancer effects beyond those achieved with single-agent treatments, while mitigating opposing side effects. Future research will focus on extracting and characterizing active constituents, especially cardiac glycosides, to enhance the therapeutic potential of anticancer compounds derived from toxic plants.
Collapse
Affiliation(s)
- Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Khemmachat Pansooksan
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Liping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Pranee Nangngam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
2
|
Patil N, Abdelrahim OG, Leupold JH, Allgayer H. JAK1 Is a Novel Target of Tumor- and Invasion-Suppressive microRNA 494-5p in Colorectal Cancer. Cancers (Basel) 2023; 16:24. [PMID: 38201452 PMCID: PMC10778350 DOI: 10.3390/cancers16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MiR-494-5p expression has been suggested to be associated with colorectal cancer (CRC) and its metastases in our previous studies. However, functional investigations on the molecule-mediating actions of this miR in CRC are lacking. In silico analysis in the present study revealed a putative binding sequence within the 3'UTR of JAK1. Overexpression of miR-494-5p in cultured CRC significantly reduced the luciferase activity of a reporter plasmid containing the wild-type JAK1-3'UTR, which was abolished by seed sequence mutation. Furthermore, the overexpression of miR-494-5p in CRC cell lines led to a significant reduction in JAK1 expression, proliferation, in vitro migration, and invasion. These effects were abolished by co-transfection with a specific double-stranded RNA that inhibits endogenous miR-494-5p. Moreover, IL-4-induced migration, invasion, and phosphorylation of JAK1, STAT6, and AKT proteins were reduced after an overexpression of this miR, suggesting that this miR affects one of the most essential pathways in CRC. A Kaplan-Meier plotter analysis revealed that patients with high JAK1 expression show reduced survival. Together, these data suggest that miR-494-5p physically inhibits the expression of JAK1 at the translational level as well as in migration and invasion, supporting the hypothesis of miR-494-5p as an early tumor suppressor and inhibitor of early steps of metastasis in CRC.
Collapse
Affiliation(s)
| | | | | | - Heike Allgayer
- Correspondence: ; Tel.: +49-(0)621-383-71630 or +49-(0)621-383-71635; Fax: +49-(0)621-383-71631
| |
Collapse
|
3
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Xue G, Xie J, Hinterndorfer M, Cigler M, Dötsch L, Imrichova H, Lampe P, Cheng X, Adariani SR, Winter GE, Waldmann H. Discovery of a Drug-like, Natural Product-Inspired DCAF11 Ligand Chemotype. Nat Commun 2023; 14:7908. [PMID: 38036533 PMCID: PMC10689823 DOI: 10.1038/s41467-023-43657-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Targeted proteasomal and autophagic protein degradation, often employing bifunctional modalities, is a new paradigm for modulation of protein function. In an attempt to explore protein degradation by means of autophagy we combine arylidene-indolinones reported to bind the autophagy-related LC3B-protein and ligands of the PDEδ lipoprotein chaperone, the BRD2/3/4-bromodomain containing proteins and the BTK- and BLK kinases. Unexpectedly, the resulting bifunctional degraders do not induce protein degradation by means of macroautophagy, but instead direct their targets to the ubiquitin-proteasome system. Target and mechanism identification reveal that the arylidene-indolinones covalently bind DCAF11, a substrate receptor in the CUL4A/B-RBX1-DDB1-DCAF11 E3 ligase. The tempered α, β-unsaturated indolinone electrophiles define a drug-like DCAF11-ligand class that enables exploration of this E3 ligase in chemical biology and medicinal chemistry programs. The arylidene-indolinone scaffold frequently occurs in natural products which raises the question whether E3 ligand classes can be found more widely among natural products and related compounds.
Collapse
Affiliation(s)
- Gang Xue
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jianing Xie
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lara Dötsch
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Lampe
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Xiufen Cheng
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Soheila Rezaei Adariani
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Dortmund, Germany.
| |
Collapse
|
5
|
New Oxazolo[5,4- d]pyrimidines as Potential Anticancer Agents: Their Design, Synthesis, and In Vitro Biological Activity Research. Int J Mol Sci 2022; 23:ijms231911694. [PMID: 36232997 PMCID: PMC9569971 DOI: 10.3390/ijms231911694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a large group of diseases in which the rapid proliferation of abnormal cells generally leads to metastasis to surrounding tissues or more distant ones through the lymphatic and blood vessels, making it the second leading cause of death worldwide. The main challenge in designing a modern anticancer therapy is to develop selective compounds that exploit specific molecular targets. In this work, novel oxazolo[5,4-d]pyrimidine derivatives were designed, synthesized, and evaluated in vitro for their cytotoxic activity against a panel of four human cancer cell lines (lung carcinoma: A549, breast adenocarcinoma: MCF7, metastatic colon adenocarcinoma: LoVo, primary colon adenocarcinoma: HT29), along with their P-glycoprotein-inhibitory ability and pro-apoptotic activity. These oxazolo[5,4-d]pyrimidine derivatives, which are structurally similar to nucleic purine bases in general, are characterized by the presence of a pharmacologically favorable isoxazole substituent at position 2 and aliphatic amino chains at position 7 of the condensed heterocyclic system. In silico analysis of the obtained compounds identified their potent inhibitory activity towards human vascular endothelial growth factor receptor-2 (VEGFR-2). Molecular docking was performed to assess the binding mode of new derivatives to the VEGFR-2 active site. Then, their physicochemical, pharmacokinetic, and pharmacological properties (i.e., ADME-administration, distribution, metabolism, and excretion) were also predicted to assess their druglikeness. In particular, compound 3g (with a 3-(N,N-dimethylamino)propyl substituent) was found to be the most potent against the HT29 cell line, with a 50% cytotoxic concentration (CC50) of 58.4 µM, exceeding the activity of fluorouracil (CC50 = 381.2 μM) and equaling the activity of cisplatin (CC50 = 47.2 µM), while being less toxic to healthy human cells (such as normal human dermal fibroblasts (NHDFs)) than these reference drugs. The results suggest that compound 3g is a potentially promising candidate for the treatment of primary colorectal cancer.
Collapse
|