1
|
Karaosmanoğlu O. Recurrent hepatocellular carcinoma is associated with the enrichment of MYC targets gene sets, elevated high confidence deleterious mutations and alternative splicing of DDB2 and BRCA1 transcripts. Adv Med Sci 2025; 70:17-26. [PMID: 39486583 DOI: 10.1016/j.advms.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Recurrence is the main cause of hepatocellular carcinoma (HCC) related deaths. Underlying recurrence biology can be better understood by comparative analysis of the complete set of transcripts between recurrent and non-recurrent HCC. In this study, transcriptomic data (GSE56545) from 21 male patients diagnosed with either recurrent or non-recurrent HCC were reanalyzed to identify deregulated pathways, somatic mutations, fusion transcripts, alternative splicing events, and the immune context in recurrent HCC. MATERIALS AND METHODS DESeq2 was used for differential expression analysis, Mutect2 for somatic mutation analysis, Arriba and STAR-Fusion for fusion transcript analysis, and rMATs for alternative splicing analysis. RESULTS The results revealed that MYC targets gene sets (Hallmark_MYC_targets_V1 and Hallmark_MYC_targets_V2) were significantly enriched in recurrent HCC. Among the MYC targets, CBX3, NOP56, CDK4, NPM1, MCM5, MCM4 and PA2G4 upregulation was significantly associated with poor survival. Somatic mutation analysis demonstrated that the numbers of high confidence deleterious mutations were significantly increased in recurrent HCC. Alternative splicing-mediated production of non-functional DDB2 and oncogenic BRCA1 D11q were discovered in recurrent HCC. Finally, CD8+ T-cells were significantly decreased in recurrent HCC. CONCLUSIONS These results indicated that the enrichment of MYC targets gene sets is one of the most critical factors that leads to the development of recurrent HCC. In addition, elevated deleterious mutation numbers and alternative spliced DDB2 and BRCA1 isoforms have been identified as prominent contributors to increasing genomic instability in male patients with recurrent HCC.
Collapse
Affiliation(s)
- Oğuzhan Karaosmanoğlu
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, İbrahim Öktem Avenue, No. 124, 70200, Karaman, Turkey.
| |
Collapse
|
2
|
Liu K, Huang Z, Zhao L, Zhao H. Significant Response to Palbociclib Plus Lenvatinib as Second-line Treatment for CDKN2A/2B Deletion Intrahepatic Cholangiocarcinoma: A Case Report. J Clin Transl Hepatol 2025; 13:169-172. [PMID: 39917465 PMCID: PMC11797823 DOI: 10.14218/jcth.2024.00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) deletions are frequently identified in patients with biliary tract cancer; however, standard treatment options for this genetic alteration are lacking. Here, we present the case of a 64-year-old woman diagnosed with intrahepatic cholangiocarcinoma and hilar lymph node metastasis who underwent radical surgery. Postoperative pathology confirmed moderately differentiated adenocarcinoma. The tumor recurred during the second cycle of adjuvant chemotherapy following surgery, and the metastatic sites included the cranial region, right lung, and right adrenal gland. Genetic analysis revealed a CDKN2A/2B deletion, indicating palbociclib sensitivity. Subsequently, the patient received palbociclib plus lenvatinib as systemic therapy, along with stereotactic radiotherapy for the intracranial lesion. Notably, the right pulmonary metastasis significantly regressed after 12 months of treatment, with the complete disappearance of the intracranial tumor. However, the disease progressed at 32.2 months, with significant enlargement of the right adrenal gland metastasis and new metastasis in the right lung. The progression-free survival and overall survival were 32.2 months and 34.4 months, respectively. In conclusion, our case demonstrates that palbociclib plus lenvatinib is a promising chemotherapy-free second-line treatment for intrahepatic cholangiocarcinoma with a CDKN2A/2B deletion.
Collapse
Affiliation(s)
- Kai Liu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyue Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijin Zhao
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Ma B, Sang Y, Du X, Zhang Y, Yin M, Xu W, Liu W, Lu J, Guan Q, Wang Y, Liao T, Wang Y, Xiang J, Shi R, Qu N, Ji Q, Zhang J, Ji D, Wang Y. Targeting CDK2 Confers Vulnerability to Lenvatinib Via Driving Senescence in Anaplastic Thyroid Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413514. [PMID: 39716890 PMCID: PMC11831524 DOI: 10.1002/advs.202413514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Indexed: 12/25/2024]
Abstract
Anaplastic thyroid cancer (ATC) is the most lethal tumor arising from thyroid follicular epithelium. Lenvatinib is an off-label use option for ATC patients in many countries but an approved prescription in Japan. However, lenvatinib resistance is a substantial clinical challenge. Clinical ATC samples including lenvatinib-resistant tumors are used to build patient-derived cells and patient-derived xenografts. High-throughput drug screening and synergy analyses are performed to identify an effective combination partner for lenvatinib. Cellular functions are detected by cell senescence, apoptosis, cell cycle, cell viability and colony formation assays. CDK2 inhibition showed the significant synthetic lethality with lenvatinib via inhibiting G1/S transition and inducing cell senescence in ATC. High expression of CDK2 is associated with lenvatinib resistance and poor clinical outcomes of ATC patients. Lenvatinib increased protein expression of CDK2 in lenvatinib-resistant ATC cells. Mechanistically, lenvatinib inhibited protein degradation of CDK2 via reducing CDK2's interaction with the RACK1-FBW7 complex, which is involved in ubiquitination and subsequent proteasomal degradation of CDK2. Combination of CDK2 inhibitors in clinical trials (Dinaciclib or PF-07104091) and lenvatinib markedly suppressed growth of xenograft tumors from the lenvatinib-resistant patient. The findings support the combination therapy strategy of lenvatinib and CDK2 inhibitor for lenvatinib-resistant ATC patients with high CDK2 expression.
Collapse
Affiliation(s)
- Ben Ma
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Youzhou Sang
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
| | - Xiaoxue Du
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yanzhi Zhang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Min Yin
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Weibo Xu
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Wanlin Liu
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jiayi Lu
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Qing Guan
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yunjun Wang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Tian Liao
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Yuting Wang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jun Xiang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Rongliang Shi
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ning Qu
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Qinghai Ji
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Jiwei Zhang
- The MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghai201203P. R. China
| | - Dongmei Ji
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghai200032P. R. China
| | - Yu Wang
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
5
|
Yan X, Qi Y, Yao X, Yin L, Wang H, Fu J, Wan G, Gao Y, Zhou N, Ye X, Liu X, Chen X. N6-methyladenosine regulators in hepatocellular carcinoma: investigating the precise definition and clinical applications of biomarkers. Biol Direct 2024; 19:103. [PMID: 39511687 PMCID: PMC11542411 DOI: 10.1186/s13062-024-00554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Accurately identifying effective biomarkers and translating them into clinical practice have significant implications for improving clinical outcomes in hepatocellular carcinoma (HCC). In this study, our objective is to explore appropriate methods to improve the accuracy of biomarker identification and investigate their clinical value. METHODS Concentrating on the N6-methyladenosine (m6A) modification regulators, we utilized dozens of multi-omics HCC datasets to analyze the expression patterns and genetic features of m6A regulators. Through the integration of big data analysis with function experiments, we have redefined the biological roles of m6A regulators in HCC. Based on the key regulators, we constructed m6A risk models and explored their clinical value in estimating prognosis and guiding personalized therapy for HCC. RESULTS Most m6A regulators exhibit abnormal expression in HCC, and their expression is influenced by copy number variations (CNV) and DNA methylation. Large-scale data analysis has revealed the biological roles of many key m6A regulators, and these findings are well consistent with experimental results. The m6A risk models offer significant prognostic value. Moreover, they assist in reassessing the therapeutic potential of drugs such as sorafenib, gemcitabine, CTLA4 and PD1 blockers in HCC. CONCLUSIONS Our findings suggest that the mutual validation of big data analysis and functional experiments may facilitate the precise identification and definition of biomarkers, and our m6A risk models may have the potential to guide personalized chemotherapy, targeted treatment, and immunotherapy decisions in HCC.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, 201203, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, 201203, China
| | - Xinyue Yao
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lulu Yin
- Department of Nursing, The People's Hospital of Suiyang, Zunyi, China
| | - Hao Wang
- Department of Surgery, The People's Hospital of Suiyang, Zunyi, China
| | - Ji Fu
- Department of Surgery, Suiyang County Traditional Chinese Medicine Hospital, Zunyi, China
| | - Guo Wan
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanqun Gao
- Department of Internal Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nanjing Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinxin Ye
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Liu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
6
|
Liu Y, Deng Y, Yang C, Naranmandura H. Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives. Bioengineering (Basel) 2024; 11:1084. [PMID: 39593745 PMCID: PMC11591775 DOI: 10.3390/bioengineering11111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cyclin-dependent kinases (CDKs) are generally involved in the progression of cell cycle and cell division in normal cells, while abnormal activations of CDKs are deemed to be a driving force for accelerating cell proliferation and tumorigenesis. Therefore, CDKs have become ideal therapeutic targets for cancer treatment. The U.S FDA has approved three CDK4/6 inhibitors (CDK4/6is) for the treatment of patients with hormone receptor-positive (HR+) or human epidermal growth factor receptor 2-negative (HER2-) advanced or metastatic breast cancer, and these drugs showed impressive results in clinics. Besides cell-cycle arrest, there is growing evidence that CDK4/6is exert paradoxical roles on cancer treatment by altering the immune system. Indeed, clinical data showed that CDK4/6is could change the immune system to exert antitumor effects, while these changes also caused tumor resistance to CDK4/6i. However, the molecular mechanism for the regulation of the immune system by CDK4/6is is unclear. In this review, we comprehensively discuss the paradoxical immunological effects of CDK4/6is in cancer treatment, elucidating their anticancer mechanisms through immunomodulatory activity and induction of acquired drug resistance by dysregulating the immune microenvironment. More importantly, we suggest a few strategies including combining CDK4/6is with immunotherapy to overcome drug resistance.
Collapse
Affiliation(s)
- Yongqin Liu
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiying Deng
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chang Yang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hua Naranmandura
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
8
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Insights in Molecular Therapies for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1831. [PMID: 38791911 PMCID: PMC11120383 DOI: 10.3390/cancers16101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data and clinical trials (MEDLINE), as well as published congress contributions and active recruiting clinical trials on targeted therapies in hepatocellular carcinoma. Combinations of different agents and medical therapy along with radiological interventions were analyzed for the setting of advanced HCC. Those settings were also analyzed in combination with adjuvant situations after resection or radiological treatments. We summarized the current knowledge for each therapeutic setting and combination that currently is or has been under clinical evaluation. We further discuss the results in the background of current treatment guidelines. In addition, we review the pathophysiological mechanisms and pathways for each of these investigated targets and drugs to further elucidate the molecular background and underlying mechanisms of action. Established and recommended targeted treatment options that already exist for patients are considered for systemic treatment: atezolizumab/bevacizumab, durvalumab/tremelimumab, sorafenib, lenvatinib, cabozantinib, regorafenib, and ramucirumab. Combination treatment for systemic treatment and local ablative treatment or transarterial chemoembolization and adjuvant and neoadjuvant treatment strategies are under clinical investigation.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany (K.G.); (D.T.)
| |
Collapse
|
9
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Zhang C, Zhou F, Zou J, Fang Y, Liu Y, Li L, Hou J, Wang G, Wang H, Lai X, Xie L, Jiang J, Yang C, Huang Y, Chen Y, Zhang H, Li Y. Clinical considerations of CDK4/6 inhibitors in HER2 positive breast cancer. Front Oncol 2024; 13:1322078. [PMID: 38293701 PMCID: PMC10824891 DOI: 10.3389/fonc.2023.1322078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Deregulation of cell cycles can result in a variety of cancers, including breast cancer (BC). In fact, abnormal regulation of cell cycle pathways is often observed in breast cancer, leading to malignant cell proliferation. CDK4/6 inhibitors (CDK4/6i) can block the G1 cell cycle through the cyclin D-cyclin dependent kinase 4/6-inhibitor of CDK4-retinoblastoma (cyclinD-CDK4/6-INK4-RB) pathway, thus blocking the proliferation of invasive cells, showing great therapeutic potential to inhibit the spread of BC. So far, three FDA-approved drugs have been shown to be effective in the management of advanced hormone receptor positive (HR+) BC: palbociclib, abemaciclib, and ribociclib. The combination strategy of CDK4/6i and endocrine therapy (ET) has become the standard therapeutic regimen and is increasingly applied to advanced BC patients. The present study aims to clarify whether CDK4/6i can also achieve a certain therapeutic effect on Human epidermal growth factor receptor 2 positive (HER2+) BC. Studies of CDK4/6i are not limited to patients with estrogen receptor positive/human epidermal growth factor receptor 2 negative (ER+/HER2-) advanced BC, but have also expanded to other types of BC. Several pre-clinical and clinical trials have demonstrated the potential of CDK4/6i in treating HER2+ BC. Therefore, this review summarizes the current knowledge and recent findings on the use of CDK4/6i in this type of BC, and provides ideas for the discovery of new treatment modalities.
Collapse
Affiliation(s)
- Cui Zhang
- Zunyi Medical University, Zunyi, China
| | - Fulin Zhou
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Jiali Zou
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Yanman Fang
- Maternal and Child Health Care Hospital of Guiyang City, Guiyang, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Libo Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Hua Wang
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xiaolian Lai
- Department of Digestive, People’s Hospital of Songtao Miao Autonomous County, Tongren, China
| | - Lu Xie
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jia Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Can Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | | | - Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
11
|
Chagaleti BK, Saravanan V, Vellapandian C, Kathiravan MK. Exploring cyclin-dependent kinase inhibitors: a comprehensive study in search of CDK-6 inhibitors using a pharmacophore modelling and dynamics approach. RSC Adv 2023; 13:33770-33785. [PMID: 38019988 PMCID: PMC10655667 DOI: 10.1039/d3ra05672d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer prevalence and resistance issues in cancer treatment are a significant public health concern globally. Among the existing strategies in cancer therapy, targeting cyclin-dependent kinases (CDKs), especially CDK-6 is found to be one of the most promising targets, as this enzyme plays a pivotal role in cell cycle stages and cell proliferation. Cell proliferation is the characteristic feature of cancer giving rise to solid tumours. Our research focuses on creating novel compounds, specifically, pyrazolopyrimidine fused azetidinones, using a groundbreaking molecular hybridization approach to target CDK-6. Through computational investigations, ligand-based pharmacophore modelling, pharmacokinetic studies (ADMET), molecular docking, and dynamics simulations, we identified 18 promising compounds. The pharmacophore model featured one aromatic hydrophobic centre (F1: Aro/Hyd) and two H-bond acceptors (F2 and F3: Acc). Molecular docking results showed favourable binding energies (-6.5 to -8.0 kcal mol-1) and effective hydrogen bonds and hydrophobic interactions. The designed compounds demonstrated good ADMET profiles. Specifically, B6 and B18 showed low energy conformation (-7.8 kcal and -7.6 kcal), providing insights into target inhibition compared to the standard drug Palbociclib. Extensive molecular dynamics simulations confirmed the stability of these derivatives. Throughout the 100 ns simulation, the ligand-protein complexes maintained structural stability, with acceptable RMSD values. These compounds hold promise as potential leads in cancer therapy.
Collapse
Affiliation(s)
- Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur-603203 India
| | - Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur-603203 India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy SRMIST, Kattankulathur Chennai Tamil Nadu - 603 203 India
| | - Muthu K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology Kattankulathur-603203 India
- Dr A. P. J. Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy SRMIST, Kattankulathur Chennai Tamil Nadu - 603 203 India
| |
Collapse
|
12
|
Chen M, Bie L, Ying J. Cancer cell-intrinsic PD-1: Its role in malignant progression and immunotherapy. Biomed Pharmacother 2023; 167:115514. [PMID: 37716115 DOI: 10.1016/j.biopha.2023.115514] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Programmed cell death protein-1 (PD-1), also called CD279, is coded by the PDCD1 gene and is constitutively expressed on the surface of immune cells. As a receptor and immune checkpoint, PD-1 can bind to programmed death ligand-1/programmed death ligand-2 (PD-L1/PD-L2) in tumor cells, leading to tumor immune evasion. Anti-PD-1 and anti-PD-L1 are important components in tumor immune therapy. PD-1 is also expressed as an intrinsic variant (iPD-1) in cancer cells where it plays important roles in malignant progression as proposed by recent studies. However, iPD-1 has received much less attention compared to PD-1 expressed on immune cells although there is an unmet medical need for fully elucidating the mechanisms of actions to achieve the best response in tumor immunotherapy. iPD-1 suppresses tumorigenesis in non-small cell lung cancer (NSCLC) and colon cancer, whereas it promotes tumorigenesis in melanoma, hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), thyroid cancer (TC), glioblastoma (GBM), and triple-negative breast cancer (TNBC). In this review, we focus on the role of iPD-1 in tumorigenesis and development and its molecular mechanisms. We also deeply discuss nivolumab-based combined therapy in common tumor therapy. iPD-1 may explain the different therapeutic effects of anti-PD-1 treatment and provide critical information for use in combined anti-tumor approaches.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
13
|
Volta F, La Monica S, Leonetti A, Gnetti L, Bonelli M, Cavazzoni A, Fumarola C, Galetti M, Eltayeb K, Minari R, Petronini PG, Tiseo M, Alfieri R. Intrinsic Resistance to Osimertinib in EGFR Mutated NSCLC Cell Lines Induced by Alteration in Cell-Cycle Regulators. Target Oncol 2023; 18:953-964. [PMID: 37855989 PMCID: PMC10663255 DOI: 10.1007/s11523-023-01005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Cell-cycle regulators are mutated in approximately 40% of all cancer types and have already been linked to worse outcomes in non-small cell lung cancer adenocarcinomas treated with osimertinib. However, their exact role in osimertinib resistance has not been elucidated. OBJECTIVE In this study, we aimed to evaluate how the CDK4/6-Rb axis may affect the sensitivity to osimertinib. METHODS We genetically increased the level of CCND1 (Cyclin D1) and reduced the levels of CDKN2A (p16) in two different adenocarcinoma cell lines, PC9 and HCC827. We also retrospectively evaluated the outcome of patients with epidermal growth factor receptor-mutated advanced non-small cell lung cancer depending on their level of Cyclin D1 and p16. RESULTS The modified clones showed higher proliferative capacity, modifications in cell-cycle phases, and higher migratory capacity than the parental cells. Cyclin D1-overexpressing clones were highly resistant to acute osimertinib treatment. CDKN2A knockdown conferred intrinsic resistance as well, although a longer time was required for adaption to the drug. In both cases, the resistant phenotype was epidermal growth factor receptor independent and associated with a higher level of Rb phosphorylation, which was unaffected by osimertinib treatment. Blocking the phosphorylation of Rb using abemaciclib, a CDK4/6 inhibitor, exerted an additive effect with osimertinib, increasing sensitivity to this drug and reverting the intrinsic resistant phenotype. In a group of 32 patients with epidermal growth factor receptor-mutated advanced non-small cell lung cancer, assessed for Cyclin D1 and p16 expression, we found that the p16-deleted group presented a lower overall response rate compared with the control group. CONCLUSIONS We conclude that perturbation in cell-cycle regulators leads to intrinsic osimertinib resistance and worse patient outcomes.
Collapse
Affiliation(s)
- Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | | | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, Monte Porzio Catone, 00078, Rome, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy.
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
14
|
State of the art and perspectives in pediatric hepatocellular carcinoma. Biochem Pharmacol 2023; 207:115373. [PMID: 36513143 DOI: 10.1016/j.bcp.2022.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Hepatoblastoma (HB) and pediatric hepatocellular carcinoma (HCC) are rare primary malignant liver cancers in children and young adults. HB is the most common and accounts for about 70 % cases; it is usually diagnosed during the first 3 years of life. Instead, pediatric HCC is uncommon, and it is associated with a poor prognosis. Overall, the prognosis of pediatric HCC is dismal with 5-year event-free survival of <30 % as compared to >80 % for HB. Surgery approaches, either resection or transplant, remain the best chance for the cure of pediatric HCC. However, chemotherapy can be helpful as an adjuvant or neoadjuvant treatment. International groups have done trials in pediatric HCC with a chemotherapy regimen, based on cisplatin and doxorubicin (PLADO) as for HB, but the efficacy is limited. Sorafenib, a multi-kinase inhibitor, following positive results in adults and in a pilot study in children, is now tested in conjunction with chemotherapy in the PHITT phase III clinical trial. Some studies have been exploring the genetic profiles of patients to find biological hallmarks that determine the aggressiveness of pediatric HCC. Pathways involved in growth and differentiation are dysregulated and as demonstrated in HB and adult HCC, an important role of the Wnt/CTNNB1 pathway in the pathogenesis of pediatric HCC is also emerging. An extended molecular analysis of tumor samples could give information about pathways as possible targets of biological and immunotherapeutic agents bringing new pharmacological options for the treatment of pediatric HCC.
Collapse
|
15
|
Terenziani R, Galetti M, La Monica S, Fumarola C, Zoppi S, Alfieri R, Digiacomo G, Cavazzoni A, Cavallo D, Corradi M, Tiseo M, Petronini PG, Bonelli M. CDK4/6 Inhibition Enhances the Efficacy of Standard Chemotherapy Treatment in Malignant Pleural Mesothelioma Cells. Cancers (Basel) 2022; 14:cancers14235925. [PMID: 36497412 PMCID: PMC9739278 DOI: 10.3390/cancers14235925] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The loss of the CDKN2A/ARF (cyclin-dependent kinase inhibitor 2A/alternative reading frame) gene is the most common alteration in malignant pleural mesothelioma (MPM), with an incidence of about 70%, thus representing a novel target for mesothelioma treatment. In the present study, we evaluated the antitumor potential of combining the standard chemotherapy regimen used for unresectable MPM with the CDK4/6 (cyclin-dependent kinase 4 or 6) inhibitor abemaciclib. METHODS Cell viability, cell death, senescence, and autophagy induction were evaluated in two MPM cell lines and in a primary MPM cell culture. RESULTS The simultaneous treatment of abemaciclib with cisplatin and pemetrexed showed a greater antiproliferative effect than chemotherapy alone, both in MPM cell lines and in primary cells. This combined treatment induced cellular senescence or autophagic cell death, depending on the cell type. More in detail, the induction of cellular senescence was related to the increased expression of p21, whereas autophagy induction was due to the impairment of the AKT/mTOR signaling. Notably, the effect of the combination was irreversible and no resumption in tumor cell proliferation was observed after drug withdrawal. CONCLUSION Our results demonstrated the therapeutic potential of CDK4/6 inhibitors in combination with chemotherapy for the treatment of MPM and are consistent with the recent positive results in the MiST2 arm in abemaciclib-treated patients.
Collapse
Affiliation(s)
- Rita Terenziani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Center of Excellence for Toxicological Research (CERT), University of Parma, 43126 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | | | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
16
|
Testa U, Pelosi E, Castelli G. Clinical value of identifying genes that inhibit hepatocellular carcinomas. Expert Rev Mol Diagn 2022; 22:1009-1035. [PMID: 36459631 DOI: 10.1080/14737159.2022.2154658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the fourth most frequent cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION A detailed and comprehensive study of the genetic abnormalities characterizing different HCC subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of these tumors may provide a fundamental contribution to improve the survival of a subset of HCC patients. Immunotherapy represents a new fundamental strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| |
Collapse
|