1
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 PMCID: PMC12119979 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
Mehdikhani F, Bahar A, Bashi M, Mohammadlou M, Yousefi B. From immunomodulation to therapeutic prospects: Unveiling the biology of butyrophilins in cancer. Cell Biochem Funct 2024; 42:e4081. [PMID: 38934382 DOI: 10.1002/cbf.4081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Butyrophilin (BTN) proteins are a type of membrane protein that belongs to the Ig superfamily. They exhibit a high degree of structural similarity to molecules in the B7 family. They fulfill a complex function in regulating immune responses, including immunomodulatory roles, as they influence γδ T cells. The biology of BTN molecules indicates that they are capable of inhibiting the immune system's ability to detect antigens within tumors. A dynamic association between BTN molecules and cellular surfaces is also recognized in specific contexts, influencing their biology. Notably, the dynamism of BTN3A1 is associated with the immunosuppression of T cells or the activation of Vγ9Vδ2 T cells. Cancer immunotherapy relies heavily on T cells to modulate immune function within the intricate interaction of the tumor microenvironment (TME). A significant interaction between the TME and antitumor immunity involves the presence of BTN, which should be taken into account when developing immunotherapy. This review explores potential therapeutic applications of BTN molecules, based on the current understanding of their biology.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Bashi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Mohammadlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
3
|
Sun J, Feng Q, Xu Y, Liu P, Wu Y. Analysis of prognostic value of lactate metabolism-related genes in ovarian cancer based on bioinformatics. J Ovarian Res 2024; 17:110. [PMID: 38778371 PMCID: PMC11110319 DOI: 10.1186/s13048-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Recent studies have provided evidence supporting the functional role and mechanism of lactate in suppressing anticancer immunity. However, there is no systematic analysis of lactate metabolism-related genes (LMRGs) and ovarian cancer (OV) prognosis. RESULTS Six genes (CCL18, CCND1, MXRA5, NRBP2, OLFML2B and THY1) were selected as prognostic genes and a prognostic model was utilized. Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) analyses were further performed and indicated that the prognostic model was effective. Subsequently, the neoplasm_cancer_status and RiskScore were determined as independent prognostic factors, and a nomogram was established with relatively accurate forecasting ability. Additionally, 2 types of immune cells (Central memory CD8 T cell and Immature B cell), 4 types of immune functions (APC co inhibition, DCs, Tfh and Th1 cells), 9 immune checkpoints (BTLA, CTLA4, IDO1, LAG3, VTCN1, CXCL10, CXCL9, IFNG, CD27) and tumor immune dysfunction and exclusion (TIDE) scores were significantly different between risk groups. The expression of 6 genes were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and the expression of 6 genes were higher in the high-grade serous carcinoma (HGSC) samples. CONCLUSION A prognostic model related to lactate metabolism was established for OV based on six genes (CCL18, CCND1, MXRA5, NRBP2, OLFML2B and THY1) that could provide new insights into therapy.
Collapse
Affiliation(s)
- Jinrui Sun
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Qinmei Feng
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Yingying Xu
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Ping Liu
- Department of Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi Province, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China.
| |
Collapse
|
4
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
5
|
Fanale D, Corsini LR, Bono M, Randazzo U, Barraco N, Brando C, Cancelliere D, Contino S, Giurintano A, Magrin L, Pedone E, Perez A, Piraino P, Pivetti A, Giovanni ED, Russo TDB, Prestifilippo O, Gennusa V, Pantuso G, Russo A, Bazan V. Clinical relevance of exosome-derived microRNAs in Ovarian Cancer: Looking for new tumor biological fingerprints. Crit Rev Oncol Hematol 2024; 193:104220. [PMID: 38036154 DOI: 10.1016/j.critrevonc.2023.104220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Specific tumor-derived extracellular vesicles, called exosomes, are considered as potential key players in cross-talk between immune system and tumor microenvironment in several solid tumors. Different studies highlighted the clinical relevance of exosomes in ovarian cancer (OC) for their role in early diagnosis, prognosis, chemoresistance, targeted therapy. The exosomes are nanosize vesicles carrying lipids, proteins, and nucleic acids. In particular, exosomes shuttle a wide spectrum of microRNAs (miRNAs) able to induce phenotypic reprogramming of target cells, contributing to tumor progression. In this review, we will discuss the promising role of miRNAs shuttled by exosomes, called exosomal miRNAs (exo-miRNAs), as potential biomarkers for early detection, tumour progression and metastasis, prognosis, and response to therapy in OC women, in order to search for new potential biological fingerprints able to better characterize the evolution of this malignancy and provide a clinically relevant non-invasive approach useful for adopting, in future, personalized therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Bono
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ambra Giurintano
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Emilia Di Giovanni
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ornella Prestifilippo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Vincenzo Gennusa
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Gianni Pantuso
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
6
|
Chen Y, Xue W, Zhang Y, Gao Y, Wang Y. A novel disulfidptosis-related immune checkpoint genes signature: forecasting the prognosis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:12843-12854. [PMID: 37462769 PMCID: PMC10587022 DOI: 10.1007/s00432-023-05076-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND HCC is an extremely malignant tumor with a very poor prognosis. In 2023, a brand-new kind of cell death known as disulfidptosis was identified. Although, the prognosis as well as expression of immune checkpoints that are closely connected with it in HCC remain unknown. METHODS In this work, we identified 49 genes with abnormal expression in liver cancer and normal liver tissue, with 23 of them being differentially expressed genes. To create a signature, we classified all HCC cases into three subtypes and used the TCGA database to evaluate each relevant gene's prognostic value for survival. RESULTS Five gene signatures were identified using the LASSO Cox regression approach, while those diagnosed with HCC were split into either low- or high-risk groups. Patients having low-risk HCC showed a much greater likelihood of surviving than those with high risk (p < 0.05). Through immune cell infiltration analysis, it was found that immune-related genes were abundant in high-risk groups and had reduced immune status. CONCLUSION In conclusion, immune checkpoint genes highly associated with disulfidptosis contribute to tumor immunity and can be used to evaluate HCC prognosis. When it comes to predicting overall survival (OS) time in HCC, risk score has been set to be a separate predictor. Through immune cell infiltration analysis, it was found that immune-related genes were abundant in high-risk groups and had reduced immune status. It is possible to measure the prognosis of HCC based on immune checkpoints genes strongly linked to disulfidptosis.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Wanying Xue
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuting Zhang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Wang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
7
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Granda-Díaz R, Martínez-Pérez A, Aguilar-García C, Rodrigo JP, García-Pedrero JM, Gonzalez S. Beyond the anti-PD-1/PD-L1 era: promising role of the BTLA/HVEM axis as a future target for cancer immunotherapy. Mol Cancer 2023; 22:142. [PMID: 37649037 PMCID: PMC10466776 DOI: 10.1186/s12943-023-01845-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success. Hence, this reflects the compelling need of unveiling novel targets for immunotherapy that allow to expand the spectrum of ICB-based strategies to achieve optimal therapeutic efficacy and benefit for cancer patients. This review thoroughly dissects current molecular and functional knowledge of BTLA/HVEM axis and the future perspectives to become a target for cancer immunotherapy. BTLA/HVEM dysregulation is commonly found and linked to poor prognosis in solid and hematological malignancies. Moreover, circulating BTLA has been revealed as a blood-based predictive biomarker of immunotherapy response in various cancers. On this basis, BTLA/HVEM axis emerges as a novel promising target for cancer immunotherapy. This prompted rapid development and clinical testing of the anti-BTLA blocking antibody Tifcemalimab/icatolimab as the first BTLA-targeted therapy in various ongoing phase I clinical trials with encouraging results on preliminary efficacy and safety profile as monotherapy and combined with other anti-PD-1/PD-L1 therapies. Nevertheless, it is anticipated that the intricate signaling network constituted by BTLA/HVEM/CD160/LIGHT involved in immune response regulation, tumor development and tumor microenvironment could limit therapeutic success. Therefore, in-depth functional characterization in different cancer settings is highly recommended for adequate design and implementation of BTLA-targeted therapies to guarantee the best clinical outcomes to benefit cancer patients.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan P Rodrigo
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M García-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
8
|
Fanale D, Brando C, Corsini LR, Cutaia S, Di Donna MC, Randazzo U, Filorizzo C, Lisanti C, Magrin L, Gurrera V, Romano R, Dimino A, Bazan Russo TD, Olive D, Vieni S, Pantuso G, Giordano A, Chiantera V, Russo A, Bazan V, Iovanna JL. Low plasma PD-L1 levels, early tumor onset and absence of peritoneal carcinomatosis improve prognosis of women with advanced high-grade serous ovarian cancer. BMC Cancer 2023; 23:437. [PMID: 37179293 PMCID: PMC10183131 DOI: 10.1186/s12885-023-10911-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The most common subtype of ovarian cancer (OC) showing immunogenic potential is represented by the high-grade serous ovarian cancer (HGSOC), which is characterized by the presence of tumor-infiltrating immune cells able to modulate immune response. Because several studies showed a close correlation between OC patient's clinical outcome and expression of programmed cell death protein-1 or its ligand (PD-1/PD-L1), the aim of our study was to investigate if plasma levels of immunomodulatory proteins may predict prognosis of advanced HGSOC women. PATIENTS AND METHODS Through specific ELISA tests, we analyzed plasma concentrations of PD-L1, PD-1, butyrophilin sub-family 3A/CD277 receptor (BTN3A1), pan-BTN3As, butyrophilin sub-family 2 member A1 (BTN2A1), and B- and T-lymphocyte attenuator (BTLA) in one hundred patients affected by advanced HGSOC, before surgery and therapy. The Kaplan-Meier method was used to generate the survival curves, while univariate and multivariate analysis were performed using Cox proportional hazard regression models. RESULTS For each analyzed circulating biomarker, advanced HGSOC women were discriminated based on long (≥ 30 months) versus short progression-free survival (PFS < 30 months). The concentration cut-offs, obtained by receiver operating characteristic (ROC) analysis, allowed to observe that poor clinical outcome and median PFS ranging between 6 and 16 months were associated with higher baseline levels of PD-L1 (> 0.42 ng/mL), PD-1 (> 2.48 ng/mL), BTN3A1 (> 4.75 ng/mL), pan-BTN3As (> 13.06 ng/mL), BTN2A1 (> 5.59 ng/mL) and BTLA (> 2.78 ng/mL). Furthermore, a lower median PFS was associated with peritoneal carcinomatosis, age at diagnosis > 60 years or Body Mass Index (BMI) > 25. A multivariate analysis also suggested that plasma concentrations of PD-L1 ≤ 0.42 ng/mL (HR: 2.23; 95% CI: 1.34 to 3.73; p = 0.002), age at diagnosis ≤ 60 years (HR: 1.70; 95% CI: 1.07 to 2.70; p = 0.024) and absence of peritoneal carcinomatosis (HR: 1.87; 95% CI: 1.23 to 2.85; p = 0.003) were significant prognostic marker for a longer PFS in advanced HGSOC patients. CONCLUSIONS The identification of high-risk HGSOC women could be improved through determination of the plasma PD-L1, PD-1, BTN3A1, pan-BTN3As, BTN2A1 and BTLA levels.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy.
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Sofia Cutaia
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | | | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Clarissa Filorizzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Chiara Lisanti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Vittorio Gurrera
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | - Raffaella Romano
- Department of Gynecologic Oncology, University of Palermo, Palermo, 90127, Italy
| | - Alessandra Dimino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy
| | | | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Salvatore Vieni
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, 90127, Italy
| | - Gianni Pantuso
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, 90127, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, PA, Philadelphia, 19122, USA
| | - Vito Chiantera
- Department of Gynecologic Oncology, University of Palermo, Palermo, 90127, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, Palermo, 90127, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, PA, Philadelphia, 19122, USA.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, 90127, Italy
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, Marseille, 13288, France
| |
Collapse
|
9
|
Bailly C, Thuru X, Goossens L, Goossens JF. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Biochem Pharmacol 2023; 209:115445. [PMID: 36739094 DOI: 10.1016/j.bcp.2023.115445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Immune checkpoints inhibition is a privileged approach to combat cancers and other human diseases. The TIM-3 (T cell immunoglobulin and mucin-domain containing-3) inhibitory checkpoint expressed on different types of immune cells is actively investigated as an anticancer target, with a dozen of monoclonal antibodies in (pre)clinical development. A soluble form sTIM-3 can be found in the plasma of patients with cancer and other diseases. This active circulating protein originates from the proteolytic cleavage by two ADAM metalloproteases of the membrane receptor shared by tumor and non-tumor cells, and extracellular vesicles. In most cancers but not all, overexpression of mTIM-3 at the cell surface leads to high level of sTIM-3. Similarly, elevated levels of sTIM-3 have been reported in chronic autoimmune diseases, inflammatory gastro-intestinal diseases, certain viral and parasitic diseases, but also in cases of organ transplantation and in pregnancy-related pathologies. We have analyzed the origin of sTIM-3, its methods of dosage in blood or plasma, its presence in multiple diseases and its potential role as a biomarker to follow disease progression and/or the treatment response. In contrast to sPD-L1 generated by different classes of proteases and by alternative splicing, sTIM-3 is uniquely produced upon ADAM-dependent shedding, providing a more homogenous molecular entity and a possibly more reliable molecular marker. However, the biological functionality of sTIM-3 remains insufficiently characterized. The review shed light on pathologies associated with an altered expression of sTIM-3 in human plasma and the possibility to use sTIM-3 as a diagnostic or therapeutic marker.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Laurence Goossens
- University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| |
Collapse
|