1
|
Sun D, Macedonia C, Chen Z, Chandrasekaran S, Najarian K, Zhou S, Cernak T, Ellingrod VL, Jagadish HV, Marini B, Pai M, Violi A, Rech JC, Wang S, Li Y, Athey B, Omenn GS. Can Machine Learning Overcome the 95% Failure Rate and Reality that Only 30% of Approved Cancer Drugs Meaningfully Extend Patient Survival? J Med Chem 2024; 67:16035-16055. [PMID: 39253942 DOI: 10.1021/acs.jmedchem.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite implementing hundreds of strategies, cancer drug development suffers from a 95% failure rate over 30 years, with only 30% of approved cancer drugs extending patient survival beyond 2.5 months. Adding more criteria without eliminating nonessential ones is impractical and may fall into the "survivorship bias" trap. Machine learning (ML) models may enhance efficiency by saving time and cost. Yet, they may not improve success rate without identifying the root causes of failure. We propose a "STAR-guided ML system" (structure-tissue/cell selectivity-activity relationship) to enhance success rate and efficiency by addressing three overlooked interdependent factors: potency/specificity to the on/off-targets determining efficacy in tumors at clinical doses, on/off-target-driven tissue/cell selectivity influencing adverse effects in the normal organs at clinical doses, and optimal clinical doses balancing efficacy/safety as determined by potency/specificity and tissue/cell selectivity. STAR-guided ML models can directly predict clinical dose/efficacy/safety from five features to design/select the best drugs, enhancing success and efficiency of cancer drug development.
Collapse
Affiliation(s)
| | | | - Zhigang Chen
- LabBotics.ai, Palo Alto, California 94303, United States
| | | | | | - Simon Zhou
- Aurinia Pharmaceuticals Inc., Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | - Yan Li
- Translational Medicine and Clinical Pharmacology, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | | | | |
Collapse
|
2
|
Gehrmann J, Soenarto DJ, Hidayat K, Beyer M, Quakulinski L, Alkarkoukly S, Berressem S, Gundert A, Butler M, Grönke A, Lennartz S, Persigehl T, Zander T, Beyan O. Seeing the primary tumor because of all the trees: Cancer type prediction on low-dimensional data. Front Med (Lausanne) 2024; 11:1396459. [PMID: 39257886 PMCID: PMC11385615 DOI: 10.3389/fmed.2024.1396459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
The Cancer of Unknown Primary (CUP) syndrome is characterized by identifiable metastases while the primary tumor remains hidden. In recent years, various data-driven approaches have been suggested to predict the location of the primary tumor (LOP) in CUP patients promising improved diagnosis and outcome. These LOP prediction approaches use high-dimensional input data like images or genetic data. However, leveraging such data is challenging, resource-intensive and therefore a potential translational barrier. Instead of using high-dimensional data, we analyzed the LOP prediction performance of low-dimensional data from routine medical care. With our findings, we show that such low-dimensional routine clinical information suffices as input data for tree-based LOP prediction models. The best model reached a mean Accuracy of 94% and a mean Matthews correlation coefficient (MCC) score of 0.92 in 10-fold nested cross-validation (NCV) when distinguishing four types of cancer. When considering eight types of cancer, this model achieved a mean Accuracy of 85% and a mean MCC score of 0.81. This is comparable to the performance achieved by approaches using high-dimensional input data. Additionally, the distribution pattern of metastases appears to be important information in predicting the LOP.
Collapse
Affiliation(s)
- Julia Gehrmann
- Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Devina Johanna Soenarto
- Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kevin Hidayat
- Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Beyer
- Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Quakulinski
- Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Samer Alkarkoukly
- Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Data Integration Center (MeDIC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Scarlett Berressem
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Anna Gundert
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Michael Butler
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Ana Grönke
- Medical Data Integration Center (MeDIC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Zander
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Oya Beyan
- Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Data Integration Center (MeDIC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Data Science and Artificial Intelligence, Fraunhofer FIT, Sankt Augustin, Germany
| |
Collapse
|
3
|
Ma W, Wu H, Chen Y, Xu H, Jiang J, Du B, Wan M, Ma X, Chen X, Lin L, Su X, Bao X, Shen Y, Xu N, Ruan J, Jiang H, Ding Y. New techniques to identify the tissue of origin for cancer of unknown primary in the era of precision medicine: progress and challenges. Brief Bioinform 2024; 25:bbae028. [PMID: 38343328 PMCID: PMC10859692 DOI: 10.1093/bib/bbae028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/10/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Despite a standardized diagnostic examination, cancer of unknown primary (CUP) is a rare metastatic malignancy with an unidentified tissue of origin (TOO). Patients diagnosed with CUP are typically treated with empiric chemotherapy, although their prognosis is worse than those with metastatic cancer of a known origin. TOO identification of CUP has been employed in precision medicine, and subsequent site-specific therapy is clinically helpful. For example, molecular profiling, including genomic profiling, gene expression profiling, epigenetics and proteins, has facilitated TOO identification. Moreover, machine learning has improved identification accuracy, and non-invasive methods, such as liquid biopsy and image omics, are gaining momentum. However, the heterogeneity in prediction accuracy, sample requirements and technical fundamentals among the various techniques is noteworthy. Accordingly, we systematically reviewed the development and limitations of novel TOO identification methods, compared their pros and cons and assessed their potential clinical usefulness. Our study may help patients shift from empirical to customized care and improve their prognoses.
Collapse
Affiliation(s)
- Wenyuan Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Wu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxia Xu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bang Du
- Real Doctor AI Research Centre, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolu Ma
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Lin
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|