1
|
Müller L, Wang JJ, Dabbiru VA, Thiele T, Schönborn L. Anti-Platelet factor 4 immunothrombosis-not just heparin and vaccine triggers. Res Pract Thromb Haemost 2025; 9:102729. [PMID: 40236285 PMCID: PMC11999341 DOI: 10.1016/j.rpth.2025.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/17/2025] Open
Abstract
Derailments at the tightly regulated interface of blood coagulation and innate inflammatory immune responses can lead to pathologic immunothrombosis. A special subset of immunothrombosis is caused by antibodies against platelet-factor 4 (PF4). Anti-PF4 antibodies triggered by heparin treatment in heparin-induced thrombocytopenia (HIT) are known for more than 50 years. Interest in anti-PF4 disorders rekindled when first cases of vaccine-induced immune thrombocytopenia and thrombosis (VITT) occurred during the worldwide COVID-19 vaccination campaign. During this time new diagnostic procedures were established to identify affected patients and to differentiate between different kinds of anti-PF4 antibodies. This review article gives an overview about the current knowledge of HIT and VITT with concepts of the underlying pathogenesis. In addition to heparin and vaccination as known triggers for HIT and VITT, concepts for other clinical cases with anti-PF4 antibodies are described in more detail. Anti-PF4 antibodies in atypical HIT-like syndromes could be triggered by presentation of various polyanions, eg, in settings of orthopedic surgery or bacterial infections. Anti-PF4 antibodies in acute VITT-like disorders can occur after viral infections. Chronic VITT-like anti-PF4 antibodies causing recurrent thrombosis and thrombocytopenia are often linked to monoclonal gammopathies. For all disorders with anti-PF4 antibodies, timely identification in patients with thrombocytopenia with or without thrombosis is crucial for successful therapy.
Collapse
Affiliation(s)
- Luisa Müller
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jing Jing Wang
- Department of Immunology, College of Medicine and Public Health, Flinders University and SA Pathology, Bedford Park, South Australia, Australia
| | - Venkata A.S. Dabbiru
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Thiele
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Linda Schönborn
- Institut für Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Xu HZ, Chen FX, Li K, Zhang Q, Han N, Li TF, Xu YH, Chen Y, Chen X. Anti-lung cancer synergy of low-dose doxorubicin and PD-L1 blocker co-delivered via mild photothermia-responsive black phosphorus. Drug Deliv Transl Res 2025; 15:269-290. [PMID: 38597996 DOI: 10.1007/s13346-024-01595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
We have previously identified a latent interaction mechanism between non-small cell lung cancer cells (NSCLCC) and their associated macrophages (TAM) mediated by mutual paracrine activation of the HMGB1/RAGE/NF-κB signaling. Activation of this mechanism results in TAM stimulation and PD-L1 upregulation in the NSCLCC. In the present work, we found that free DOX at a low concentration that does not cause DNA damage could activate the HMGB1/RAGE/NF-κB/PD-L1 pathway byinducing oxidative stress. It was thus proposed that a combination of low-dose DOX and a PD-L1 blocker delivered in the NSCLC tumor would achieve synergistic TAM stimulation and thereby synergetic anti-tumor potency. To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. In vitro experiments then demonstrated that low-dose DOX and BMS-202 delivered via BMS-202/DOX@BP under mild photothermia displayed enhanced tumor cell toxicity with a potent synergism only in the presence of TAM. This enhanced synergism was due to an anti-tumor M1-like TAM phenotype that was synergistically induced by low dose DOX plus BMS-202 only in the presence of the tumor cells, indicating the damaged tumor cells to be the cardinal contributor to the M1-like TAM stimulation. In vivo, BMS-202/DOX@BP under mild photothermia exhibited targeted delivery to NSCLC graft tumors in mice and synergistic anti-tumor efficacy of delivered DOX and BMS-202. In conclusion, low-dose DOX in combination with a PD-L1 blocker is an effective strategy to turn TAM against their host tumor cells exploiting the HMGB1/RAGE/NF-κB/PD-L1 pathway. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.
Collapse
Affiliation(s)
- Hua-Zhen Xu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Fei-Xiang Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China
| | - Ning Han
- School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Hubei, 442000, China
| | - Tong-Fei Li
- School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Hubei, 442000, China
| | - Yong-Hong Xu
- Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.
| | - Xiao Chen
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Avenue No.185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
3
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Tang M, Yang S, Zou J, Li M, Sun Y, Wang M, Li W, He J, Chen Y, Tang Z. Global trends and research hotspots of PCSK9 and cardiovascular disease: a bibliometric and visual analysis. Front Cardiovasc Med 2024; 11:1336264. [PMID: 38887452 PMCID: PMC11180773 DOI: 10.3389/fcvm.2024.1336264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Background Cardiovascular disease (CVD) is a prevalent non-communicable disease globally and holds the position of being the primary cause of mortality worldwide. Consequently, considerable focus has been directed towards the prevention and management of CVD. PCSK9, a frequently targeted element in the treatment and prevention of CVD, can reduce cardiovascular risk by effectively lowering lipid levels even in the context of statin therapy. It also exhibits substantial potential in the diagnosis and treatment of familial hypercholesterolemia from genetic aspects. This bibliometric study aims to analyze and visualize the global trends and emerging hotspots of PCSK9 and CVD researches and provide researchers with new perspectives in further studies. Methods The data was obtained from the Web of Science Core Collection database. A total of 2,474 publications related to PCSK9 and CVD published between January 2006 and July 2023 were included. The VOSviewer was used to analyze most-cited references, co-authorship, co-citation, co-occurrence and generate a collaborative network map of authors, countries, and institutions. CiteSpace was used to analyze author and institution centroids, keyword bursts, and timeline graphs. Result A total of 2,474 articles related to CVD and PCSK9 were included. The number of articles and citations show an increasing trend from year to year. Publications were mainly from the United States. The most active institution was Amgen Inc. Watts, Gerald F. was the most prolific author. Atherosclerosis was the most published journal. Literature co-citation and keyword co-occurrence revealed that early studies focused on the lipid-lowering effects of PCSK9 inhibitors in the context of statins therapy, long-term efficacy, adverse effects, LDLR, diagnosis and treatment of familial hypercholesterolemia. In recent years, myocardial ischemic protection, CRISPR-based editing, and new therapeutic strategies for arteriosclerotic cardiovascular disease have gotten wide attention. The protein convertase, inflammation, beta-polyacetate, and inclisiran may be the important future research directions. Conclusion This study analyses the current status and global trends in the CVD and PCSK9 studies comprehensively, which may provide researchers and policymakers with new and comprehensive perspectives on in this field of research.
Collapse
Affiliation(s)
- Masong Tang
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Sen Yang
- Department of Urology, Hunan University of Medicine General Hospital, Huaihua, Hunan, China
| | - Junying Zou
- Department of Gynecologic, Hunan University of Medicine General Hospital, Huaihua, Hunan, China
| | - Meng Li
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Sun
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Mengqi Wang
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Wanhan Li
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Junhui He
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Chen
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| | - Zhanyou Tang
- Department of Basic Medical Sciences, Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Kheraldine H, Gupta I, Cyprian FS, Vranic S, Al-Farsi HF, Merhi M, Dermime S, Al Moustafa AE. Targeting HER2-positive breast cancer cells by a combination of dasatinib and BMS-202: Insight into the molecular pathways. Cancer Cell Int 2024; 24:94. [PMID: 38431613 PMCID: PMC10909263 DOI: 10.1186/s12935-023-03195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 12/26/2023] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Recent investigations have reported the benefits of using a tyrosine kinase inhibitor, dasatinib (DA), as well as programmed death-ligand 1 (PD-L1) inhibitors in the management of several solid tumors, including breast cancer. Nevertheless, the outcome of the combination of these inhibitors on HER2-positive breast cancer is not explored yet. METHODS Herein, we investigated the impact of DA and PD-L1 inhibitor (BMS-202) combination on HER2-positive breast cancer cell lines, SKBR3 and ZR75. RESULTS Our data reveal that the combination significantly inhibits cell viability of both cancer cell lines as compared to monotreatment. Moreover, the combination inhibits epithelial-mesenchymal transition (EMT) progression and reduces cancer cell invasion by restoring E-cadherin and β-catenin expressions and loss of vimentin, major biomarkers of EMT. Additionally, the combination reduces the colony formation of both cell lines in comparison with their matched control. Also, the combination considerably inhibits the angiogenesis of the chorioallantoic membrane model compared with monotreatment. Molecular pathway analysis of treated cells shows that this combination blocks HER2, AKT, β-catenin, and JNK1/2/3 activities. CONCLUSION Our findings implicate that a combination of DA and BMS-202 could have a significant impact on the management of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Sidra Medicine, Doha, Qatar
| | - Farhan Sachal Cyprian
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Halema F Al-Farsi
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
- Biomedical Research Centre, Qatar University, P. O. Box 2713, Doha, Qatar.
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Dickinson SE, Vaishampayan P, Jandova J, Ai Y(E, Kirschnerova V, Zhang T, Calvert V, Petricoin E, Chow HHS, Hu C, Roe D, Bode A, Curiel-Lewandrowski C, Wondrak GT. Inhibition of UV-Induced Stress Signaling and Inflammatory Responses in SKH-1 Mouse Skin by Topical Small-Molecule PD-L1 Blockade. JID INNOVATIONS 2024; 4:100255. [PMID: 38328594 PMCID: PMC10847774 DOI: 10.1016/j.xjidi.2023.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024] Open
Abstract
The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma. Topical application of the small-molecule PD-L1 inhibitor BMS-202 significantly attenuated UV-induced activator protein-1 transcriptional activity in SKH-1 bioluminescent reporter mouse skin, also confirmed in human HaCaT reporter keratinocytes. RT-qPCR analysis revealed that BMS-202 antagonized UV induction of inflammatory gene expression. Likewise, UV-induced cleavage of procaspase-3, a hallmark of acute skin photodamage, was attenuated by topical BMS-202. NanoString nCounter transcriptomic analysis confirmed downregulation of cutaneous innate immunity- and inflammation-related responses, together with upregulation of immune response pathway gene expression. Further mechanistic analysis confirmed that BMS-202 antagonizes UV-induced PD-L1 expression both at the mRNA and protein levels in SKH-1 epidermis. These data suggest that topical pharmacological PD-L1 antagonism using BMS-202 shows promise for skin protection against photodamage.
Collapse
Affiliation(s)
- Sally E. Dickinson
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology, College of Medicine Tucson, The University of Arizona, Tucson, Arizona, USA
- Skin Cancer Institute, University of Arizona, Tucson, Arizona, USA
| | - Prajakta Vaishampayan
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Jana Jandova
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Yuchen (Ella) Ai
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Viktoria Kirschnerova
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, College of Medicine, George Mason University, Fairfax, Virginia, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, College of Medicine, George Mason University, Fairfax, Virginia, USA
| | - H-H. Sherry Chow
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Molecular & Cellular Biology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Chengcheng Hu
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zukerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Denise Roe
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Department of Epidemiology and Biostatistics, Mel and Enid Zukerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Ann Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Skin Cancer Institute, University of Arizona, Tucson, Arizona, USA
- Division of Dermatology, Department of Medicine, College of Medicine Tucson, The University of Arizona, Tucson, Arizona, USA
| | - Georg T. Wondrak
- The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA
- Skin Cancer Institute, University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Kaushik M, Kumar S, Singh M, Sharma H, Bhowmick M, Bhowmick P, Ashique S, Khatoon H, Pal R, Ansari MA. Bio-inspired Nanomaterials in Cancer Theranostics. NANOTHERANOSTICS FOR DIAGNOSIS AND THERAPY 2024:95-123. [DOI: https:/doi.org/10.1007/978-981-97-3115-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
8
|
Matsuo K, Hayashi R, Iwasa Y. Multiple colonies of cancer involved in mutual suppression with the immune system. J Theor Biol 2023; 572:111577. [PMID: 37423483 DOI: 10.1016/j.jtbi.2023.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
We study the effects of the immune system on multiple cancer colonies. When cancer cells proliferate, cytotoxic T lymphocytes (CTLs) reactive to the cancer-specific antigens are activated, suppressing the growth of cancer colonies. The immune reaction activated by a large cancer colony may suppress and eliminate smaller colonies. However, cancer cells mitigate immune reactions by slowing down the activation of CTLs in dendritic cells with regulatory T cells and by inactivating CTLs attacking cancer cells with immune checkpoints. If cancer cells strongly suppress the immune reaction, the system may become bistable, where both the cancer-dominated and immunity-dominated states are locally stable. We study several models differing in the distance between colonies and the migration speeds of CTLs and regulatory T cells. We examine how the domains of attraction for multiple equilibria change with parameters. Nonlinear cancer-immunity dynamics may produce a sharp transition from a state with a small number of colonies and strong immunity to one with many colonies and weak immunity, resulting in the rapid emergence of many cancer colonies in the same organ or metastatic sites.
Collapse
Affiliation(s)
- Kosei Matsuo
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0035, Japan
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0035, Japan
| | - Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0035, Japan; Institute of Freshwater Biology, Nagano University, Komaki, Ueda, Nagano 386-0031, Japan.
| |
Collapse
|
9
|
PCSK9 Inhibitors in Cancer Patients Treated with Immune-Checkpoint Inhibitors to Reduce Cardiovascular Events: New Frontiers in Cardioncology. Cancers (Basel) 2023; 15:cancers15051397. [PMID: 36900189 PMCID: PMC10000232 DOI: 10.3390/cancers15051397] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are exposed to a high risk of atherosclerosis and cardiometabolic diseases due to systemic inflammatory conditions and immune-related atheroma destabilization. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein involved in metabolism of low-density lipoprotein (LDL) cholesterol. PCSK9 blocking agents are clinically available and involve monoclonal antibodies, and SiRNA reduces LDL levels in high-risk patients and atherosclerotic cardiovascular disease events in multiple patient cohorts. Moreover, PCSK9 induces peripheral immune tolerance (inhibition of cancer cell- immune recognition), reduces cardiac mitochondrial metabolism, and enhances cancer cell survival. The present review summarizes the potential benefits of PCSK9 inhibition through selective blocking antibodies and siRNA in patients with cancer, especially in those treated with ICIs therapies, in order to reduce atherosclerotic cardiovascular events and potentially improve ICIs-related anticancer functions.
Collapse
|