1
|
Li W, Liu N, Chen M, Liu D, Liu S. Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189262. [PMID: 39827973 DOI: 10.1016/j.bbcan.2025.189262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant clinical challenge due to its aggressive behavior and poor prognosis, making the development of novel therapeutics with enhanced efficacy and minimal side effects critical. Metformin, a widely used antidiabetic agent, has recently emerged as a potential adjunctive therapy for HNSCC, exhibiting both direct anti-tumor and immunomodulatory effects. This review comprehensively explores the multifaceted role of metformin in shaping the tumor immune microenvironment within HNSCC. We emphasize its pivotal role in modulating immune cell populations and its potential for synergistic action with immunotherapeutic strategies. Furthermore, we address the current challenges associated with optimizing dosing regimens, identifying predictive biomarkers, and integrating metformin with immunotherapy. By dissecting these aspects, this review aims to pave the way for the development of personalized HNSCC treatment strategies that fully exploit the therapeutic potential of metformin.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| |
Collapse
|
2
|
Wang X, Cao X, Zhou B, Mei J, Li Y, Zhao X, Zhu W, Huang F, Sun L, Wang M. FGFR3 signaling is essential for gastric cancer cell triggering the transition of BM-MSCs into tumor-associated MSCs. Differentiation 2025; 143:100859. [PMID: 40106855 DOI: 10.1016/j.diff.2025.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) tend to migrate towards tumor sites and interact with tumor cells, thus incorporating into tumor microenvironment by transition into various stromal cells, particularly tumor-associated MSCs. However, the mechanisms involved in this process is still not clarified. Herein, we focused on miR-99a-5p and confirmed its reduction in gastric cancer-associated MSCs (GC-MSCs) compared to BM-MSCs. Under-expression of miR-99a-5p stimulated BM-MSCs transition into GC-MSCs-like cells, while overexpression of this miRNA abrogated tumor-promoting roles of GC-MSCs. miR-99a-5p not only targeted modulation of fibroblast growth factor receptor (FGFR3) but also negatively affected its phosphorylated levels. Suppression of FGFR3 signaling by AZD4547 or siRNA against FGFR3 notably blocked the miR-99a-5p inhibitor-induced BM-MSCs transition and the oncogenic roles of GC-MSCs. However, miR-99a-5p overexpression did not diminish the ability of gastric cancer cells to educate BM-MSCs. The levels of phosphorylated FGFR3, but not total FGFR3, was increased in BM-MSCs educated by gastric cancer cells. AZD4547 significantly suppressed the education capacity of gastric cancer cells on BM-MSCs. Taken together, although manipulating miR-99a-5p to mimic its levels in GC-MSCs promotes the transition of BM-MSCs into GC-MSCs-like cells, FGFR3 signaling, rather than miR-99a-5p, is unexpectedly essential for the education of BM-MSCs by gastric cancer cells. This discovery provides a novel mechanism underlying the transition of BM-MSCs into tumor-associated MSCs and identifies potential therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Feng Huang
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China; Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, Jiangsu Province, China.
| | - Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
3
|
Chen H, Xu X, Li J, Xue Y, Li X, Zhang K, Jiang H, Liu X, Li M. Decoding tumor-fibrosis interplay: mechanisms, impact on progression, and innovative therapeutic strategies. Front Pharmacol 2024; 15:1491400. [PMID: 39534084 PMCID: PMC11555290 DOI: 10.3389/fphar.2024.1491400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Malignant tumors are a category of diseases that possess invasive and metastatic capabilities, with global incidence and mortality rates remaining high. In recent years, the pivotal role of fibrosis in tumor progression, drug resistance, and immune evasion has increasingly been acknowledged. Fibrosis enhances the proliferation, migration, and invasion of tumor cells by modifying the composition and structure of the extracellular matrix, thereby offering protection for immune evasion by tumor cells. The activation of cancer-associated fibroblasts (CAFs) plays a significant role in this process, as they further exacerbate the malignant traits of tumors by secreting a variety of cytokines and growth factors. Anti-fibrotic tumor treatment strategies, including the use of anti-fibrotic drugs and inhibition of fibrosis-related signaling pathways such as Transforming Growth Factor-β (TGF-β), have demonstrated potential in delaying tumor progression and improving the effectiveness of chemotherapy, targeted therapy, and immunotherapy. In the future, by developing novel drugs that target the fibrotic microenvironment, new therapeutic options may be available for patients with various refractory tumors.
Collapse
Affiliation(s)
- Huiguang Chen
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xuexin Xu
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jingxian Li
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Xue
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xin Li
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Kaiyu Zhang
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Haihui Jiang
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoliu Liu
- Institute of Infection, Immunology, and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Anatomy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mingzhe Li
- Department of Anatomy, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Osuala KO, Chalasani A, Aggarwal N, Ji K, Moin K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers (Basel) 2024; 16:2910. [PMID: 39199680 PMCID: PMC11353178 DOI: 10.3390/cancers16162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.
Collapse
Affiliation(s)
- Kingsley O. Osuala
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Twelve Biosciences Research & Development, Kalamazoo, MI 49009, USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA;
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| |
Collapse
|
5
|
El Herch I, Tornaas S, Dongre HN, Costea DE. Heterogeneity of cancer-associated fibroblasts and tumor-promoting roles in head and neck squamous cell carcinoma. Front Mol Biosci 2024; 11:1340024. [PMID: 38966131 PMCID: PMC11222324 DOI: 10.3389/fmolb.2024.1340024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
Tumor microenvironment (TME) in head and neck squamous cell carcinoma (HNSCC) has a major influence on disease progression and therapy response. One of the predominant stromal cell types in the TME of HNSCC is cancer-associated fibroblasts (CAF). CAF constitute a diverse cell population and we are only at the beginning of characterizing and understanding the functions of various CAF subsets. CAF have been shown to interact with tumor cells and other components of the TME to shape mainly a favourable microenvironment for HNSCC progression, although some studies report existence of tumor-restraining CAF subtypes. The numerous pathways used by CAF to promote tumorigenesis may represent potential therapeutic targets. This review summarizes current knowledge on the origins, subtypes and mechanisms employed by CAF in HNSCC. The aim is to contribute to the understanding on how CAF actively influence the TME and modulate different immune cell types, as well as cancer cells, to establish a conducive setting for cancer growth. Although CAF are currently a promising therapeutic target for the treatment of other types of cancer, there is no significant therapeutic advancement in HNSCC.
Collapse
Affiliation(s)
- Imane El Herch
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Stian Tornaas
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Harsh Nitin Dongre
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Zenga J, Awan M, Frei A, Foeckler J, Kuehn R, Espinosa OV, Bruening J, Massey B, Wong S, Shreenivas A, Shukla M, Kasprzak J, Sun Y, Shaheduzzaman M, Chen F, Kearl T, Himburg HA. Tumor-specific T cells in head and neck cancer have rescuable functionality and can be identified through single-cell co-culture. Transl Oncol 2024; 42:101899. [PMID: 38320395 PMCID: PMC10851216 DOI: 10.1016/j.tranon.2024.101899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) remains a treatment-resistance disease with limited response to immunotherapy. While T cells in HNSCC are known to display phenotypic dysfunction, whether they retain rescuable functional capacity and tumor-killing capability remains unclear. METHODS To investigate the functionality and tumor-specificity of tumor-infiltrating lymphocytes (TILs) across HNSCCs, malignant cell lines and TILs were derived from 31 HPV-negative HNSCCs at the time of standard surgical resection. T cell functional capacity was evaluated through ex vivo expansion, immunophenotyping, and IsoLight single-cell proteomics. Tumor-specificity was investigated through both bulk and single-cell tumor-TIL co-culture. RESULTS TILs could be successfully generated from 24 patients (77%), including both previously untreated and radiation recurrent HNSCCs. We demonstrate that across HNSCCs, TILs express multiple exhaustion markers but maintain a predominantly effector memory phenotype. After ex vivo expansion, TILs retain immunogenic functionality even from radiation-resistant, exhausted, and T cell-depleted disease. We further demonstrate tumor-specificity of T cells across HNSCC patients through patient-matched malignant cell-T cell co-culture. Finally, we use optofluidic technology to establish an autologous single tumor cell-single T cell co-culture platform for HNSCC. Cells derived from three HNSCC patients underwent single-cell co-culture which enabled identification and visualization of individual tumor-killing TILs in real-time in all patients. CONCLUSIONS These studies show that cancer-specific T cells exist across HNSCC patients with rescuable immunogenicity and can be identified on a single-cell level. These data lay the foundation for development of patient-specific T cell immunotherapies in HNSCC.
Collapse
Affiliation(s)
- Joseph Zenga
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Musaddiq Awan
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne Frei
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jamie Foeckler
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Rachel Kuehn
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Oscar Villareal Espinosa
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Bruening
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Becky Massey
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Stuart Wong
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aditya Shreenivas
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Monica Shukla
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Julia Kasprzak
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yunguang Sun
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Md Shaheduzzaman
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fanghong Chen
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tyce Kearl
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Heather A Himburg
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
7
|
Mun S, Lee HJ, Kim P. Rebuilding the microenvironment of primary tumors in humans: a focus on stroma. Exp Mol Med 2024; 56:527-548. [PMID: 38443595 PMCID: PMC10984944 DOI: 10.1038/s12276-024-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 03/07/2024] Open
Abstract
Conventional tumor models have critical shortcomings in that they lack the complexity of the human stroma. The heterogeneous stroma is a central compartment of the tumor microenvironment (TME) that must be addressed in cancer research and precision medicine. To fully model the human tumor stroma, the deconstruction and reconstruction of tumor tissues have been suggested as new approaches for in vitro tumor modeling. In this review, we summarize the heterogeneity of tumor-associated stromal cells and general deconstruction approaches used to isolate patient-specific stromal cells from tumor tissue; we also address the effect of the deconstruction procedure on the characteristics of primary cells. Finally, perspectives on the future of reconstructed tumor models are discussed, with an emphasis on the essential prerequisites for developing authentic humanized tumor models.
Collapse
Affiliation(s)
- Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea.
- Institute for Health Science and Technology, KAIST, Daejeon, 34141, South Korea.
| |
Collapse
|
8
|
Stocker M, Blancke Soares A, Liebsch G, Meier RJ, Canis M, Gires O, Haubner F. Quantification of oxygen consumption in head and neck cancer using fluorescent sensor foil technology. Front Oncol 2024; 14:1002798. [PMID: 38390268 PMCID: PMC10882065 DOI: 10.3389/fonc.2024.1002798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Head and neck squamous cell carcinoma (HNSCC) patients suffer from frequent local recurrences that negatively impact on prognosis. Hence, distinguishing tumor and normal tissue is of clinical importance as it may improve the detection of residual tumor tissue in surgical resection margins and during imaging-based surgery planning. Differences in O2 consumption (OC) can be used to this aim, as they provide options for improved surgical, image-guided approaches. Methods In the present study, the potential of a fluorescent sensor foil-based technology to quantify OC in HNSCC was evaluated in an in vitro 3D model and in situ in patients. Results In vitro measurements of OC using hypopharyngeal and esophageal cell lines allowed a specific detection of tumor cell spheroids embedded together with cancer-associated fibroblasts in type I collagen extracellular matrix down to a diameter of 440 µm. Pre-surgery in situ measurements were conducted with a handheld recording device and sensor foils with an oxygen permeable membrane and immobilized O2-reactive fluorescent dyes. Lateral tongue carcinoma and carcinoma of the floor of the mouth were chosen for analysis owing to their facilitated accessibility. OC was evaluated over a time span of 60 seconds and was significantly higher in tumor tissue compared to healthy mucosa in the vicinity of the tumor. Discussion Hence, OC quantification using fluorescent sensor foil-based technology is a relevant parameter for the differentiation of tumor tissue of the head and neck region and may support surgery planning.
Collapse
Affiliation(s)
- Magdalena Stocker
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Alexandra Blancke Soares
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Gregor Liebsch
- PreSens Precision Sensing GmbH, Imaging Solutions, Regensburg, Germany
| | - Robert J Meier
- PreSens Precision Sensing GmbH, Imaging Solutions, Regensburg, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig Maximilians University (LMU) Munich, Munich, Germany
| |
Collapse
|
9
|
Wahbi W, Awad S, Salo T, Al-Samadi A. Stroma modulation of radiation response in head and neck squamous cell carcinoma: Insights from zebrafish larvae xenografts. Exp Cell Res 2024; 435:113911. [PMID: 38182078 DOI: 10.1016/j.yexcr.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND The tumour microenvironment (TME) of head and neck squamous cell carcinoma (HNSCC) consists of different subtypes of cells that interact with the tumour or with each other. This study investigates the possibility of co-culturing HNSCC cells with different stroma cells in a zebrafish xenograft model, focusing on the effect of stroma cells on HNSCC growth and response to irradiation. MATERIAL AND METHOD HNSCC metastatic cell line HSC-3 was used along with five types of stroma cells: normal gingival fibroblasts (NOF), cancer associated fibroblasts (CAF), macrophages, CD4+ T cells, and human umbilical vein endothelial cells (HUVEC). The mixture of HSC-3 cells and each-stroma cell type-was injected into 2-day post-fertilization zebrafish embryos, and the effect of stroma cells on tumour growth was tested. The study also aimed to mimic the HNSCC tumour by injecting a mixture of HSC-3 cells, CAFs, macrophages, and HUVECs into zebrafish embryos and testing the effect of these stroma cells on the cancer cells' response to irradiation compared to HSC-3-only tumours. RESULTS CAFs had a significant inducement effect on tumour size, while HUVECs showed the opposite effect. The irradiated group of HSC-3-only tumour had a significantly smaller tumor cell area compared to the control, while the group with stroma cells and HSC-3 cells showed cancer cells being resistant to irradiation. CONCLUSION This is the first report of co-culturing cancer cells with several types of stroma cells using a zebrafish xenograft model. This study also highlighted the role of stroma cells in turning the cancer cells from radioresponsive to radioresistant.
Collapse
Affiliation(s)
- Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland
| | - Shady Awad
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Hematology Research Unit, Department of Hematology, University of Helsinki and Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, P.O. Box 21, Helsinki, 00014, Finland; Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5281, Oulu, 90014, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5281, Oulu, 90014, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki, 00014, Finland; Institute of Dentistry, School of Medicine, Kuopio Campus, University of Eastern Finland, P.O. Box 1627, Kuopio, Finland.
| |
Collapse
|
10
|
Lyu SI, Johannsen J, Simon AG, Knipper K, Wuerdemann N, Sharma SJ, Thelen M, Hansen KK, Fretter C, Klasen C, Esser J, Suchan MC, Abing H, Zimmermann PH, Schultheis AM, Schloesser HA, Klussmann JP, Quaas A, Eckel HNC. Co-expression patterns of cancer associated fibroblast markers reveal distinct subgroups related to patient survival in oropharyngeal squamous cell carcinoma. Front Cell Dev Biol 2024; 12:1337361. [PMID: 38328551 PMCID: PMC10847231 DOI: 10.3389/fcell.2024.1337361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
Background: The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is rapidly increasing in high income countries due to its association with persistent high-risk human papilloma virus (HPV) infection. Recent scientific advances have highlighted the importance of the tumor microenvironment in OPSCC. In this study, including 216 OPSCC patients, we analyze the composition of four established markers of cancer associated fibroblasts (CAFs) in the context of intratumoral CD8 T-cell infiltration. Methods: Immunohistochemical staining for fibroblast activation protein (FAP), platelet-derived growth factor receptor beta (PDGFRb), periostin, alpha smooth muscle actin (α-SMA) and CD8 were analyzed digitally and their association with survival, tumor- and patient characteristics was assessed. Results: Co-expression of CAF markers was frequent but not associated with HPV status. FAPhigh and PDGFRbhigh expression were associated with increased CD8 T-cell infiltration. Low expression of PDGFRb improved patient survival in female patients but not in male patients. We identified PDGFRblow periostinlow α-SMAlow status as an independent predictor of improved survival (hazard ratio 0.377, p = 0.006). Conclusion: These findings elucidate the co-expression of four established CAF markers in OPSCC and underscore their association with T-cell infiltration and patient survival. Future analyses of CAF subgroups in OPSCC may enable the development of individualized therapies.
Collapse
Affiliation(s)
- Su Ir Lyu
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Jannik Johannsen
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Karl Knipper
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Nora Wuerdemann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shachi Jenny Sharma
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Martin Thelen
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Kevin Karl Hansen
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Caroline Fretter
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Charlotte Klasen
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Julia Esser
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Malte Christian Suchan
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Helen Abing
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Philipp Heinrich Zimmermann
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Anne Maria Schultheis
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Hans Anton Schloesser
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital of Cologne, Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Jens Peter Klussmann
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine and University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Hans Nikolaus Caspar Eckel
- Faculty of Medicine and University Hospital of Cologne, Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
12
|
Tirelli G, Marcuzzo AV, Gardenal N, Tofanelli M, Degrassi F, Cova MA, Sacchet E, Giudici F, Polesel J, Boscolo-Rizzo P. Prognostic role of the MRI-based involvement of superior pharyngeal constrictor muscle in oropharyngeal squamous cell carcinoma. Head Neck 2024; 46:161-170. [PMID: 37909147 DOI: 10.1002/hed.27566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/23/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVES The aim of this study was to determine the impact of the involvement of the superior pharyngeal constrictor muscle (SPCM) evaluated by magnetic resonance imaging (MRI) on outcome in oropharyngeal squamous cell carcinomas (OPSCCs). METHODS A retrospective study including consecutive patients with OPSCC treated with curative intent. RESULTS A total of 82 consecutive patients with OPSCC met inclusion criteria. At multivariate analysis, patients with SPCM infiltration were at significantly higher risk of death (HR: 3.37, CI: 1.21-9.38) and progression (HR: 3.39, CI: 1.38-8.32). In a multivariate model conditioned on HPV status, a significantly higher risk of death and progression was observed by combining both SPCM and HPV status with patients harboring an HPV-negative OPSCC with SPCM infiltration showing the poorest outcome. CONCLUSION MRI evidence of SPCM involvement significantly and independently increases the risk of death and progression in subjects with OPSCC. Considering both MRI-assessed SPCM infiltration and HPV status significantly improved risk stratification in these malignancies.
Collapse
Affiliation(s)
- Giancarlo Tirelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Alberto Vito Marcuzzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Nicoletta Gardenal
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Margherita Tofanelli
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Ferruccio Degrassi
- Department of Medical, Surgical and Health Sciences, Section of Radiology, University of Trieste, Trieste, Italy
| | - Maria Assunta Cova
- Department of Medical, Surgical and Health Sciences, Section of Radiology, University of Trieste, Trieste, Italy
| | - Erika Sacchet
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| | - Fabiola Giudici
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Paolo Boscolo-Rizzo
- Department of Medical, Surgical and Health Sciences, Section of Otolaryngology, University of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Anameriç A, Czerwonka A, Nees M. Optimization of a Three-Dimensional Culturing Method for Assessing the Impact of Cisplatin on Notch Signaling in Head and Neck Squamous Cell Carcinoma (HNSCC). Cancers (Basel) 2023; 15:5320. [PMID: 38001580 PMCID: PMC10670464 DOI: 10.3390/cancers15225320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer type, with cisplatin being a primary treatment approach. However, drug resistance and therapy failure pose a significant challenge, affecting nearly 50% of patients over time. This research had two aims: (1) to optimize a 3D cell-culture method for assessing the interplay between tumor cells and cancer-associated fibroblasts (CAFs) in vitro; and (2) to study how cisplatin impacts the Notch pathway, particularly considering the role of CAFs. Using our optimized "3D sheet model" approach, we tested two HNSCC cell lines with different cisplatin sensitivities and moderate, non-mutated NOTCH1 and -3 expressions. Combining cisplatin with a γ-secretase inhibitor (crenigacestat) increased sensitivity and induced cell death in the less sensitive cell line, while cisplatin alone was more effective in the moderately sensitive line and sensitivity decreased with the Notch inhibitor. Cisplatin boosted the expression of core Notch signaling proteins in 3D monocultures of both lines, which was counteracted by crenigacestat. In contrast, the presence of patient-derived CAFs mitigated effects and protected both cell lines from cisplatin toxicity. Elevated NOTCH1 and NOTCH3 protein levels were consistently correlated with reduced cisplatin sensitivity and increased cell survival. Additionally, the Notch ligand JAG2 had additional, protective effects reducing cell death from cisplatin exposure. In summary, we observed an inverse relationship between NOTCH1 and NOTCH3 levels and cisplatin responsiveness, overall protective effects by CAFs, and a potential link between JAG2 expression with tumor cell survival.
Collapse
Affiliation(s)
| | | | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (A.A.); (A.C.)
| |
Collapse
|
14
|
Okolo O, Yu V, Flashner S, Martin C, Nakagawa H, Lin DT, Puram SV, Parikh AS. Protocol for tumor dissociation and fluorescence-activated cell sorting of human head and neck cancers. STAR Protoc 2023; 4:102294. [PMID: 37149858 PMCID: PMC10189548 DOI: 10.1016/j.xpro.2023.102294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Tumors originating from the head and neck represent diverse histologies and are comprised of several cell types, including malignant cells, cancer-associated fibroblasts, endothelial cells, and immune cells. In this protocol, we describe a step-by-step approach for the dissociation of fresh human head and neck tumor specimens, followed by isolation of viable single cells using fluorescence-activated cell sorting. Our protocol facilitates the effective downstream use of techniques, including single-cell RNA sequencing and generation of three-dimensional patient-derived organoids. For complete details on the use and execution of this protocol, please refer to Puram et al. (2017)1 and Parikh et al. (2022).2.
Collapse
Affiliation(s)
- Ogoegbunam Okolo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Victoria Yu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Cecilia Martin
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Organoid and Cell Culture Core, Columbia University Digestive and Liver Diseases Research Center, Columbia University, New York, NY 10032, USA; Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard University, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| | - Sidharth V Puram
- Department of Otolaryngology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Anuraag S Parikh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Okuyama K, Suzuki K, Yanamoto S. Relationship between Tumor Budding and Partial Epithelial-Mesenchymal Transition in Head and Neck Cancer. Cancers (Basel) 2023; 15:cancers15041111. [PMID: 36831453 PMCID: PMC9953904 DOI: 10.3390/cancers15041111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor budding (TB), a microscopic finding in the stroma ahead of the invasive fronts of tumors, has been well investigated and reported as a prognostic marker in head and neck squamous cell carcinoma (HNSCC). Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and metastasis, and its status cannot be distinguished from TB. The current understanding of partial EMT (p-EMT), the so-called halfway step of EMT, focuses on the tumor microenvironment (TME). Although this evidence has been investigated, the clinicopathological and biological relationship between TB and p-EMT remains debatable. At the invasion front, previous research suggested that cancer-associated fibroblasts (CAFs) are important for tumor progression, metastasis, p-EMT, and TB formation in the TME. Although there is biological evidence of TB drivers, no report has focused on their organized functional relationships. Understanding the mechanism of TB onset and the relationship between p-EMTs may facilitate the development of novel diagnostic and prognostic methods, and targeted therapies for the prevention of metastasis in epithelial cancer. Thus far, major pieces of evidence have been established from colorectal cancer (CRC), due to a large number of patients with the disease. Herein, we review the current understanding of p-EMT and TME dynamics and discuss the relationship between TB development and p-EMT, focusing on CAFs, hypoxia, tumor-associated macrophages, laminin-integrin crosstalk, membrane stiffness, enzymes, and viral infections in cancers, and clarify the gap of evidence between HNSCC and CRC.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 North University Ave, Ann Arbor, MI 48109, USA
- University of Michigan Rogel Cancer Center, 1600 Huron Pathway, Ann Arbor, MI 48105, USA
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence: or
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|