1
|
Wei TT, Blanc E, Peidli S, Bischoff P, Trinks A, Horst D, Sers C, Blüthgen N, Beule D, Morkel M, Obermayer B. High-confidence calling of normal epithelial cells allows identification of a novel stem-like cell state in the colorectal cancer microenvironment. Int J Cancer 2024; 155:1655-1669. [PMID: 39031967 DOI: 10.1002/ijc.35079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024]
Abstract
Single-cell analyses can be confounded by assigning unrelated groups of cells to common developmental trajectories. For instance, cancer cells and admixed normal epithelial cells could adopt similar cell states thus complicating analyses of their developmental potential. Here, we develop and benchmark CCISM (for Cancer Cell Identification using Somatic Mutations) to exploit genomic single nucleotide variants for the disambiguation of cancer cells from genomically normal non-cancer cells in single-cell data. We find that our method and others based on gene expression or allelic imbalances identify overlapping sets of colorectal cancer versus normal colon epithelial cells, depending on molecular characteristics of individual cancers. Further, we define consensus cell identities of normal and cancer epithelial cells with higher transcriptome cluster homogeneity than those derived using existing tools. Using the consensus identities, we identify significant shifts of cell state distributions in genomically normal epithelial cells developing in the cancer microenvironment, with immature states increased at the expense of terminal differentiation throughout the colon, and a novel stem-like cell state arising in the left colon. Trajectory analyses show that the new cell state extends the pseudo-time range of normal colon stem-like cells in a cancer context. We identify cancer-associated fibroblasts as sources of WNT and BMP ligands potentially contributing to increased plasticity of stem cells in the cancer microenvironment. Our analyses advocate careful interpretation of cell heterogeneity and plasticity in the cancer context and the consideration of genomic information in addition to gene expression data when possible.
Collapse
Affiliation(s)
- Tzu-Ting Wei
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Peidli
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Philip Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Alexandra Trinks
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioportal Single Cells, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioportal Single Cells, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Song X, Xia B, Gao X, Liu X, Lv H, Wang S, Xiao Q, Luo H. Related cellular signaling and consequent pathophysiological outcomes of ubiquitin specific protease 24. Life Sci 2024; 342:122512. [PMID: 38395384 DOI: 10.1016/j.lfs.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Boyu Xia
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinrong Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinying Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hongyuan Lv
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Shiwei Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Qinpei Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hao Luo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
Ognibene M, De Marco P, Amoroso L, Fragola M, Zara F, Parodi S, Pezzolo A. Neuroblastoma Patients' Outcome and Chromosomal Instability. Int J Mol Sci 2023; 24:15514. [PMID: 37958497 PMCID: PMC10648898 DOI: 10.3390/ijms242115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Chromosomal instability (CIN) induces a high rate of losses or gains of whole chromosomes or parts of chromosomes. It is a hallmark of most human cancers and one of the causes of aneuploidy and intra-tumor heterogeneity. The present study aimed to evaluate the potential prognostic role of CIN in NB patients at diagnosis. We performed array comparative genomic hybridization analyses on 451 primary NB patients at the onset of the disease. To assess global chromosomal instability with high precision, we focused on the total number of DNA breakpoints of gains or losses of chromosome arms. For each tumor, an array-CGH-based breakpoint instability index (BPI) was assigned which defined the total number of chromosomal breakpoints per genome. This approach allowed us to quantify CIN related to whole genome disruption in all NB cases analyzed. We found differences in chromosomal breakages among the NB clinical risk groups. High BPI values are negatively associated with survival of NB patients. This association remains significant when correcting for stage, age, and MYCN status in the Cox model. Stratified analysis confirms the prognostic effect of BPI index in low-risk NB patients with non-amplified MYCN and with segmental chromosome aberrations.
Collapse
Affiliation(s)
- Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Patrizia De Marco
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Loredana Amoroso
- U.O.C. Oncologia Pediatrica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Martina Fragola
- Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.F.); (S.P.)
| | - Federico Zara
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (P.D.M.); (F.Z.)
| | - Stefano Parodi
- Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.F.); (S.P.)
| | | |
Collapse
|
4
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|