1
|
Crotts MS, Jacobs JC, Baer RW, Cox JL. Doramectin Induces Apoptosis in B16 Melanoma Cells. Anticancer Agents Med Chem 2025; 25:244-256. [PMID: 39411968 DOI: 10.2174/0118715206325844240909144543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 03/25/2025]
Abstract
INTRODUCTION/OBJECTIVE Metastatic melanoma resists current pharmacological regimens that act through apoptosis. This indicates that therapies acting via non-apoptotic cell-death pathways could be pursued. Doramectin has shown promising results in another cancer of neural crest origin, neuroblastoma, through the inhibition of growth via autophagy. Our research hypothesis is that doramectin induces autophagy in B16F10 melanoma cells. METHODS Cells were treated with doramectin (15 uM) or a combination of both doramectin and a cell-death inhibitor, compared to untreated control cells (media), and then analyzed with MTT analysis. Likewise, MDC analysis was completed to detect autophagy involvement with doramectin treatment. Flow cytometry and TUNEL Assay were conducted to observe cell death-related effects. RESULTS MTT analysis of doramectin-treated cells displayed a decrease in cell growth compared to control. Apoptotic morphology was prominent in melanoma cells treated with doramectin. Increased autophagy was not detected by fluorometric microscopic analysis. Flow cytometry analysis of doramectin-treated cells showed apoptosis as a major mode of cell death with some necrosis. CONCLUSION Doramectin induces a novel cell-death mechanism in melanoma compared to other forms of cancer and should be studied as an effective anti-cancer agent for melanoma treatment.
Collapse
Affiliation(s)
- Megan S Crotts
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Jena C Jacobs
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Robert W Baer
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - James L Cox
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| |
Collapse
|
2
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Ma X, Zhuang H, Xu M, Hou F, Xue C. Association between cathepsins and skin cancers: A bidirectional two-sample Mendelian randomization study. Skin Res Technol 2024; 30:e13905. [PMID: 39138831 PMCID: PMC11322223 DOI: 10.1111/srt.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Several cathepsins have been identified as being involved in the development of cancer. Nevertheless, the connection between cathepsins and skin cancers remained highly elusive. METHODS A bidirectional Mendelian randomization (MR) analysis was performed to investigate the causal association between cathepsins and skin malignancies. The genome-wide association studies (GWAS) data for cathepsins, malignant melanoma (MM), and basal cell carcinoma (BCC) were obtained from European research. The primary method employed was inverse variance weighted. In addition, MR-Egger, weighted median, weighted mode, and simple mode were also executed. Sensitivity analysis was performed using Cochran's Q test, MR-Egger, and MR-PRESSO. RESULTS From univariable MR (UVMR), cathepsin H, and S were determined to have a causal relationship with BCC. Additionally, cathepsin H was identified as associated with MM. Multivariable MR (MVMR) showed that after correcting for risk factors of skin carcinoma, cathepsin H was detected to be protective against BCC, whereas cathepsin S has been observed as a risk factor for BCC. No substantial pleiotropy and heterogeneity were identified in the sensitivity analysis. CONCLUSION This study was the first to establish a direct link between cathepsins and skin malignancies. Cathepsin H and S have the potential to serve as new biomarkers for BCC, offering valuable assistance in the prompt identification, treatment, and prevention of the disease. Nevertheless, additional clinical trials are required to validate our findings.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Plastic SurgeryChanghai HospitalNaval Military Medical UniversityShanghaiPeople's Republic of China
| | - Haocheng Zhuang
- Department of Plastic SurgeryChanghai HospitalNaval Military Medical UniversityShanghaiPeople's Republic of China
| | - Mingze Xu
- Department of Plastic SurgeryChanghai HospitalNaval Military Medical UniversityShanghaiPeople's Republic of China
| | - Fangzhen Hou
- Department of Plastic SurgeryChanghai HospitalNaval Military Medical UniversityShanghaiPeople's Republic of China
| | - Chunyu Xue
- Department of Plastic SurgeryChanghai HospitalNaval Military Medical UniversityShanghaiPeople's Republic of China
| |
Collapse
|
4
|
Li S, Zhao J, Wang G, Yao Q, Leng Z, Liu Q, Jiang J, Wang W. Based on scRNA-seq and bulk RNA-seq to establish tumor immune microenvironment-associated signature of skin melanoma and predict immunotherapy response. Arch Dermatol Res 2024; 316:262. [PMID: 38795156 DOI: 10.1007/s00403-024-03080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 10/28/2023] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Skin cutaneous melanoma (SKCM), a form of skin cancer, ranks among the most formidable and lethal malignancies. Exploring tumor microenvironment (TME)-based prognostic indicators would help improve the efficacy of immunotherapy for SKCM patients. This study analyzed SKCM scRNA-seq data to cluster non-malignant cells that could be used to explore the TME into nine immune/stromal cell types, including B cells, CD4 T cells, CD8 T cells, dendritic cells, endothelial cells, Fibroblasts, macrophages, neurons, and natural killer (NK) cells. Using data from The Cancer Genome Atlas (TCGA), we employed SKCM expression profiling to identify differentially expressed immune-associated genes (DEIAGs), which were then incorporated into weighted gene co-expression network analysis (WGCNA) to investigate TME-associated hub genes. Discover candidate small molecule drugs based on pivotal genes. Tumor immune microenvironment-associated genes (TIMAGs) for constructing TIMAS were identified and validated. Finally, the characteristics of TIAMS subgroups and the ability of TIMAS to predict immunotherapy outcomes were analyzed. We identified five TIMAGs (CD86, CD80, SEMA4D, C1QA, and IRF1) and used them to construct TIMAS. In addition, five potential SKCM drugs were identified. The results showed that TIMAS-low patients were associated with immune-related signaling pathways, high MUC16 mutation frequency, high T cell infiltration, and M1 macrophages, and were more favorable for immunotherapy. Collectively, TIMAS constructed by comprehensive analysis of scRNA-seq and bulk RNA-seq data is a promising marker for predicting ICI treatment outcomes and improving individualized therapy for SKCM patients.
Collapse
Affiliation(s)
- Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Leng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qinglei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jun Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
5
|
Hutchison A, Sibanda C, Hulme M, Anwar S, Gur B, Thomas R, Lowery LA. Re-examining the evidence that ivermectin induces a melanoma-like state in Xenopus embryos. Bioessays 2024; 46:e2300143. [PMID: 37985957 PMCID: PMC10841629 DOI: 10.1002/bies.202300143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Modeling metastasis in animal systems has been an important focus for developing cancer therapeutics. Xenopus laevis is a well-established model, known for its use in identifying genetic mechanisms underlying diseases and disorders in humans. Prior literature has suggested that the drug, ivermectin, can be used in Xenopus to induce melanocytes to convert into a metastatic melanoma-like state, and thus could be ideal for testing possible melanoma therapies in vivo. However, there are notable inconsistencies between ivermectin studies in Xenopus and the application of ivermectin in mammalian systems, that are relevant to cancer and melanoma research. In this review, we examine the ivermectin-induced phenotypes in Xenopus, and we explore the current uses of ivermectin in human research. We conclude that while ivermectin may be a useful drug for many biomedical purposes, it is not ideal to induce a metastatic melanocyte phenotype in Xenopus for testing the effects of potential melanoma therapeutics.
Collapse
Affiliation(s)
- Ainsley Hutchison
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Chiedza Sibanda
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mackenzie Hulme
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Sarah Anwar
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Bengisu Gur
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Rachael Thomas
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Laura Anne Lowery
- Alfred B. Nobel Section of Hematology and Medical Oncology, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Li MY, Zhang J, Lu X, Zhou D, Deng XF, Liu QX, Dai JG, Zheng H. Ivermectin induces nonprotective autophagy by downregulating PAK1 and apoptosis in lung adenocarcinoma cells. Cancer Chemother Pharmacol 2024; 93:41-54. [PMID: 37741955 DOI: 10.1007/s00280-023-04589-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION LUAD (Lung adenocarcinoma), the most common subtype of lung carcinoma and one of the highest incidences and mortality cancers in the world remains still a substantial treatment challenge. Ivermectin, an avermectin derivative, has been traditionally used as an antiparasitic agent in human and veterinary medicine practice during the last few decades. Though ivermectin has been shown to be effective against a variety of cancers, however, there is few available data reporting the antitumor effects of ivermectin in LUAD. METHODS The effect of ivermectin on cell viability and proliferative ability of LUAD cells was evaluated using CCK-8 and colony formation assay. Apoptosis rate and autophagy flux were detected using flow cytometry based on PI/Annexin V staining and confocal laser scanning microscope based on LC3-GFP/RFP puncta, respectively. Western blotting experiment was conducted to verify the results of changes in apoptosis and autophagy. LUAD-TCGA and GEO databases were used to analyse the expression and predictive value of PAK1 in LUAD patients. Xenograft model and immumohistochemical staining were used for verification of the inhibitor effect of ivermectin in vivo. RESULTS Ivermectin treatment strikingly impeded the colony formation, and the viability of the cell, along with cell proliferation, and caused the apoptosis and enhanced autophagy flux in LUAD cells. In addition, ivermectin-induced nonprotective autophagy was confirmed by treating LUAD cells with 3-MA, an autophagy inhibitor. Mechanistically, we found that ivermectin inhibited PAK1 protein expression in LUAD cells and we confirmed that overexpression of PAK1 substantially inhibited ivermectin-induced autophagy in LUAD cells. Based on TCGA and GEO databases, PAK1 was highly expressed in LUAD tissues as compared with normal tissues. Furthermore, LUAD patients with high PAK1 level have poor overall survival. Finally, in vivo experiments revealed that ivermectin efficiently suppressed the cellular growth of LUAD among nude mice. CONCLUSION This study not only revealed the mechanism of ivermectin inhibited the growth of LUAD but also supported an important theoretical basis for the development of ivermectin during the therapy for LUAD.
Collapse
Affiliation(s)
- Man-Yuan Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xu-Feng Deng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Wang R, Song C, Ding S, Zuo Y, Yi K, Li N, Wang B, Geng Q. Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury. Front Immunol 2023; 14:1324021. [PMID: 38162674 PMCID: PMC10755469 DOI: 10.3389/fimmu.2023.1324021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-associated death, occurring during or within 6 hours after transfusion. Reports indicate that TRALI can be categorized as having or lacking acute respiratory distress syndrome (ARDS) risk factors. There are two types of TRALI in terms of its pathogenesis: antibody-mediated and non-antibody-mediated. The key initiation steps involve the priming and activation of neutrophils, with neutrophil extracellular traps (NETs) being established as effector molecules formed by activated neutrophils in response to various stimuli. These NETs contribute to the production and release of reactive oxygen species (ROS) and participate in the destruction of pulmonary vascular endothelial cells. The significant role of NETs in TRALI is well recognized, offering a potential pathway for TRALI treatment. Moreover, platelets, macrophages, endothelial cells, and complements have been identified as promoters of NET formation. Concurrently, studies have demonstrated that the storage of platelets and concentrated red blood cells (RBC) can induce TRALI through bioactive lipids. In this article, recent clinical and pre-clinical studies on the pathophysiology and pathogenesis of TRALI are reviewed to further illuminate the mechanism through which NETs induce TRALI. This review aims to propose new therapeutic strategies for TRALI, with the hope of effectively improving its poor prognosis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Liu H, Peng J, Huang L, Ruan D, Li Y, Yuan F, Tu Z, Huang K, Zhu X. The role of lysosomal peptidases in glioma immune escape: underlying mechanisms and therapeutic strategies. Front Immunol 2023; 14:1154146. [PMID: 37398678 PMCID: PMC10311646 DOI: 10.3389/fimmu.2023.1154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jie Peng
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Linzhen Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Dong Ruan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yuguang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Fan Yuan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
9
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
10
|
Zhong W, Wang Q, Shen X, Du J. The emerging role of neutrophil extracellular traps in cancer: from lab to ward. Front Oncol 2023; 13:1163802. [PMID: 37188184 PMCID: PMC10175598 DOI: 10.3389/fonc.2023.1163802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures derived from neutrophils, which typically consist of DNA, released from the nucleus or mitochondria, and decorated with histones and granule proteins. They are well known as an important structure in innate immunity to eliminate pathogenic bacteria, similar to neutrophils. Initially, NETs are reported to take part in the progression of inflammatory diseases; now, they have also been implicated in the progression of sterile inflammation such as autoimmune disease, diabetes, and cancer. In this review, we will describe the recent studies which have investigated the role of NETs in the development of cancer, especially metastasis. We also prescribe the strategies for targeting NETs in the multiple cancer types, which suggest that NETs are a promising treatment for cancer patients.
Collapse
Affiliation(s)
- Wentao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qianyu Wang
- The Second School of Clinical Medical, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| | - Junfeng Du
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| |
Collapse
|