1
|
Chen Y, Shao Z, Wu S. Research progress on the tsRNA biogenesis, function, and application in lung cancer. Noncoding RNA Res 2025; 10:63-69. [PMID: 39309197 PMCID: PMC11414277 DOI: 10.1016/j.ncrna.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In recent years, there has been a mounting occurrence of lung cancer, which stands as one of the most prevalent malignancies globally. This rise in incidence poses a significant hazard to human health, making lung cancer a matter of grave concern. It has been shown that tRNA-derived small non-coding RNA (tsRNA) is involved in the development of tumors, especially lung cancer, through mechanisms such as regulating mRNA stability, influencing protein translation, and acting as epigenetic regulators. Recent studies have shown that tsRNA is abnormally expressed in the plasma and tissues of lung cancer patients, and its expression level is closely related to the malignancy degree and postoperative recurrence of lung cancer. Therefore, for lung cancer patients, tsRNA represents a promising non-invasive biomarker, exhibiting significant potential for facilitating early diagnosis and prognostic evaluation, and for achieving precision treatment of lung cancer by regulating its expression. This article focuses on the biogenesis of tsRNA and its ability to promote lung cancer cell proliferation and invasion. In addition, the specific clinical significance of tsRNA in lung cancer was discussed. Finally, we discuss the need for further improvement of small RNA sequencing technology, and the future research directions and strategies of tsRNA in lung cancer and tumor diseases were summarized.
Collapse
Affiliation(s)
- Yu Chen
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhuowei Shao
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shibo Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Tang C, Sun SX, Gu C, Li CJ, Xu J, Su KL, Zhou DD, Yu K, Xiao QL, Chen XL. Diagnostic and prognostic values of tsRNAs in lung cancer: a meta-analysis. BMC Cancer 2025; 25:153. [PMID: 39871144 PMCID: PMC11770914 DOI: 10.1186/s12885-025-13536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Lung cancer (LC) is the leading cause of cancer-related death in humans. tRNA-derived small RNA (tsRNA) is a novel biomarker that plays a crucial role in the genesis and development of LC. In this study, we aimed to investigate the value of differentially expressed tsRNAs in LC through meta-analysis. METHODS PubMed and Web of Science were searched for articles published up to January 10, 2024. Diagnostic odds ratios (DORs) and areas under the receiver operating characteristic curve (AUCs) were used to evaluate the potential of tsRNAs as diagnostic markers for LC. Furthermore, hazard ratios (HRs) and 95% confidence intervals (95% CIs) were used to analyze association of tsRNAs with LC prognosis. RESULTS In total, 12 studies were included in the analysis. Our results indicated that the combined DOR of total tsRNAs for LC diagnosis was 7.32; the AUC was 0.81. Subgroup analysis revealed that high levels of tsRNAs in serum had good diagnostic efficacy (DOR = 16.56, AUC = 0.88). Moreover, a high tsRNAs level was associated with a worse prognosis in LC patients (HR = 1.59, 95% CI: 1.33-1.90). CONCLUSION Our findings suggest that a high tsRNAs level has potential value for diagnosis and prognosis of LC patients. However, further high-quality studies are needed to validate our results.
Collapse
Affiliation(s)
- Cheng Tang
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Su-Xia Sun
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Gu
- Department of Gastroenterology Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao-Juan Li
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke-Lei Su
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Zhou
- Department of Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kuai Yu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Qing-Ling Xiao
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Li Chen
- Department of Respiratory Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Li T, Zhen H, Wu W, Yang F, Cao Z. tsRNAs: A Prospective, Effective Therapeutic Intervention for Neurodegenerative Diseases. CNS Neurosci Ther 2024; 30:e70177. [PMID: 39690867 DOI: 10.1111/cns.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Neurological disorders known as neurodegenerative diseases (NDDs) result in the slow loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS), as well as the collapse of neural networks in terms of structure and function. NDDs are expected to surpass cancer as the second biggest cause of mortality by 2040, according to World Health Organization (WHO) estimations. Neurons cannot effectively regenerate themselves because they are terminally differentiated. Accordingly, it is challenging to find medications that could stop or slow neurodegeneration. MAIN BODY The tsRNAs are a type of small non-coding RNAs derived from mature tRNAs or tRNA precursors. tsRNAs control gene expression and have a role in many physiological and pathological processes, including neurological illnesses. Antisense oligonucleotides are effective therapeutic agents for neurological diseases, and they may be the treatment of choice for neurodegenerative diseases in the future. Here, we review the biogenesis of tsRNA, its physiological and pathological functions in the central nervous system and neurological disorders, and its prospective use as a nucleic acid medication to treat NDDs, providing theoretical support and guidance for further exploration of tsRNAs in therapeutic intervention. CONCLUSION tsRNAs are emerging as important regulatory molecules in neurodegenerative diseases. Understanding the functions of tsRNAs in neurodegenerative diseases may provide new insights into disease mechanisms and lead to the development of novel treatment strategies.
Collapse
Affiliation(s)
- Tianqi Li
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Hui Zhen
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiwei Wu
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Fengtang Yang
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhonghong Cao
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
4
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Do AN, Magesh S, Uzelac M, Chen T, Li WT, Bouvet M, Brumund KT, Wang-Rodriguez J, Ongkeko WM. Computational Analysis Suggests That AsnGTT 3'-tRNA-Derived Fragments Are Potential Biomarkers in Papillary Thyroid Carcinoma. Int J Mol Sci 2024; 25:10631. [PMID: 39408960 PMCID: PMC11476591 DOI: 10.3390/ijms251910631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Transfer-RNA-derived fragments (tRFs) are a novel class of small non-coding RNAs that have been implicated in oncogenesis. tRFs may act as post-transcriptional regulators by recruiting AGO proteins and binding to highly complementary regions of mRNA at seed regions, resulting in the knockdown of the transcript. Therefore, tRFs may be critical to tumorigenesis and warrant investigation as potential biomarkers. Meanwhile, the incidence of papillary thyroid carcinoma (PTC) has increased in recent decades and current diagnostic technology stands to benefit from new detection methods. Although small non-coding RNAs have been studied for their role in oncogenesis, there is currently no standard for their use as PTC biomarkers, and tRFs are especially underexplored. Accordingly, we aim to identify dysregulated tRFs in PTC that may serve as biomarker candidates. We identified dysregulated tRFs and driver genes between PTC primary tumor samples (n = 511) and adjacent normal tissue samples (n = 59). Expression data were obtained from MINTbase v2.0 and The Cancer Genome Atlas. Dysregulated tRFs and genes were analyzed in tandem to find pairs with anticorrelated expression. Significantly anticorrelated tRF-gene pairs were then tested for potential binding affinity using RNA22-if a heteroduplex can form via complementary binding, this would support the hypothesized RNA silencing mechanism. Four tRFs were significantly dysregulated in PTC tissue (p < 0.05), with only AsnGTT 3'-tRF being upregulated. Binding affinity analysis revealed that tRF-30-RY73W0K5KKOV (AsnGTT 3'-tRF) exhibits sufficient complementarity to potentially bind to and regulate transcripts of SLC26A4, SLC5A8, DIO2, and TPO, which were all found to be downregulated in PTC tissue. In the present study, we identified dysregulated tRFs in PTC and found that AsnGTT 3'-tRF is a potential post-transcriptional regulator and biomarker.
Collapse
Affiliation(s)
- Annie N. Do
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (A.N.D.); (S.M.); (M.U.); (T.C.); (W.T.L.)
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Shruti Magesh
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (A.N.D.); (S.M.); (M.U.); (T.C.); (W.T.L.)
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Matthew Uzelac
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (A.N.D.); (S.M.); (M.U.); (T.C.); (W.T.L.)
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA;
- Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tianyi Chen
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (A.N.D.); (S.M.); (M.U.); (T.C.); (W.T.L.)
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Wei Tse Li
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (A.N.D.); (S.M.); (M.U.); (T.C.); (W.T.L.)
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA;
- UCSF School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Michael Bouvet
- Department of Surgery, UC San Diego School of Medicine, University of Calfornia, La Jolla, CA 92093, USA;
- Department of Surgery, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Kevin T. Brumund
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA;
| | - Jessica Wang-Rodriguez
- Pathology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Pathology, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA
| | - Weg M. Ongkeko
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (A.N.D.); (S.M.); (M.U.); (T.C.); (W.T.L.)
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, University of California, La Jolla, CA 92093, USA;
| |
Collapse
|
6
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Wu F, Yang Q, Pan W, Meng W, Ma Z, Wang W. tRNA-derived fragments: mechanism of gene regulation and clinical application in lung cancer. Cell Oncol (Dordr) 2024; 47:37-54. [PMID: 37642916 DOI: 10.1007/s13402-023-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer, being the most widespread and lethal form of cancer globally, has a high incidence and mortality rate primarily attributed to challenges associated with early detection, extensive metastasis, and frequent recurrence. In the context of lung cancer development, noncoding RNA molecules have a crucial role in governing gene expression and protein synthesis. Specifically, tRNA-derived fragments (tRFs), a subset of noncoding RNAs, exert significant biological influences on cancer progression, encompassing transcription and translation processes as well as epigenetic regulation. This article primarily examines the mechanisms by which tRFs modulate gene expression and contribute to tumorigenesis in lung cancer. Furthermore, we provide a comprehensive overview of the current bioinformatics analysis of tRFs in lung cancer, with the objective of offering a systematic and efficient approach for studying the expression profiling, functional enrichment, and molecular mechanisms of tRFs in this disease. Finally, we discuss the clinical significance and potential avenues for future research on tRFs in lung cancer. This paper presents a comprehensive systematic review of the existing research findings on tRFs in lung cancer, aiming to offer improved biomarkers and drug targets for clinical management of lung cancer.
Collapse
Affiliation(s)
- Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Qianqian Yang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Meng
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China.
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China.
| |
Collapse
|
8
|
Shao L, Wang X, Yu Q, Gong J, Zhang X, Zhou Y. In lung adenocarcinoma, low expression of the cell surface extracellular nucleotidase CD39 is related to immune infiltration and a poor prognosis. J Thorac Dis 2022; 14:4938-4950. [PMID: 36647506 PMCID: PMC9840027 DOI: 10.21037/jtd-22-1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Background Extracellular nucleotidase on the cell surface CD39 plays a crucial role in the tumor microenvironment in the immunosuppressive adenosine pathway. However, the association between CD39 and lung adenocarcinoma has rarely been recorded. This study aimed to explore the involvement of CD39 in the biological processes of lung cancer. Methods First, a prediction model was established by analyzing the expression of CD39 in lung adenocarcinoma and its relationships with clinical evidence of lung adenocarcinoma using The Cancer Genome Atlas (TCGA) and Tumor IMmune Estimation Resource (TIMER) databases. In the TCGA and TIMER databases, the relationship between CD39 and immune cells and the relationship with immune-related expressed genes were studied. Subsequently, using gene set enrichment analysis (GSEA), the potential mechanism of action was investigated. Results Lung adenocarcinoma patients with elevated CD39 expression had improved overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). CD39 expression was reduced in lung adenocarcinoma tumor tissue in the TCGA and TIMER databases. The nomogram's C-index was 0.688 (0.665-0.712), indicating some consistency in the prediction model. According to the TIMER and TCGA databases, CD39 expression was strongly connected with several immune cells invading and with immune checkpoint-related markers such as PDCD1, CD274, CTLA-4, and several functional T cells. GSEA revealed that CD39 influences the extracellular matrix, immunological microenvironment, programmed death 1 (PD-1) expression, glucose metabolism, PTEN stability, inflammatory response, and angiogenesis in lung cancer. Conclusions The current study's findings demonstrated that CD39 can be employed as a possible predictive biomarker for lung adenocarcinoma and may enhance the patients' poor prognosis by preventing the immunological escape of tumor cells from the lung adenocarcinoma tumor microenvironment.
Collapse
Affiliation(s)
- Lili Shao
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaoli Wang
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Qiongzhu Yu
- Department of Pathology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, China
| | - Jun Gong
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaodong Zhang
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yan Zhou
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| |
Collapse
|