1
|
Zhang C, Wang F, Zhang T, Yang Y, Wang L, Zhang X, Lai L. De Novo Design of Cyclic Peptide Binders Based on Fragment Docking and Assembling. J Chem Inf Model 2025; 65:4206-4218. [PMID: 40223692 DOI: 10.1021/acs.jcim.5c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Cyclic peptides offer distinct advantages in modulating protein-protein interactions (PPIs), including enhanced target specificity, structural stability, reduced toxicity, and minimal immunogenicity. However, most cyclic peptide therapeutics currently in clinical development are derived from natural products or the cyclization of protein loops, with few methodologies available for de novo cyclic peptide design based on target protein structures. To fill this gap, we introduce CycDockAssem, an integrative computational platform that facilitates the systematic generation of head-to-tail cyclic peptides made entirely of natural - or -amino acid residues. The cyclic peptide binders are constructed from oligopeptide fragments containing 3-5 amino acids. A fragment library comprising 15 million fragments was created from the Protein Data Bank. The assembly workflow involves dividing the targeted protein surface into two docking boxes; the updated protein-protein docking program SDOCK2.0 is then utilized to identify the best binding fragments for these boxes. The fragments binding in different boxes are concatenated into a ring using two additional peptide fragments as linkers. A ROSETTA script is employed for sequence redesign, while molecular dynamics simulations and MM-PBSA calculations assess the conformational stability and binding free energy. To enhance docking performance, cation-π interactions, backbone hydrogen bonding potential, and explicit water exclusion energy were incorporated into the docking score function of SDOCK2.0, resulting in a significantly improved performance on the updated test set. A mirror design strategy was developed for cyclic peptides composed of -amino acids, where natural amino acid cyclic peptide binders are first designed for the mirror image of the target protein and the resulting complexes are then mirrored back. CycDockAssem was experimentally validated using tumor necrosis factor α (TNFα) as the target. Surface plasmon resonance experiments demonstrated that six of the seven designed cyclic peptides bind TNFα with micromolar affinity, two of which significantly inhibit TNFα downstream gene expression. Overall, CycDockAssem provides a robust strategy for targeted de novo cyclic peptide drug discovery.
Collapse
Affiliation(s)
- Changsheng Zhang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanhao Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Yang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liying Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Luhua Lai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Bontreger LJ, Gallo AD, Moon J, Silinski P, Monson EE, Franz KJ. Intramolecular Histidine Cross-Links Formed via Copper-Catalyzed Oxidation of Histatin Peptides. J Am Chem Soc 2025; 147:12749-12765. [PMID: 40197000 DOI: 10.1021/jacs.5c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Histidine is a versatile amino acid with metal-binding, nucleophilic, and basic properties that endow many peptides and proteins with biological activity. However, histidine itself is susceptible to oxidative modifications via post-translational modifications, photo-oxidation, and metal-catalyzed oxidation. Despite multiple investigations into these different oxidation systems, the varied attributions and differential outcomes point to significant gaps in our understanding of the coordination requirements, spectral features, and reaction products that accompany the Cu-catalyzed oxidation of histidine-containing peptides. Here, we use model peptides of Histatin-5, a salivary peptide with Cu-potentiated antifungal activity that relies on its histidine residues, to characterize the complex mixture resulting from the reaction with Cu under physiologically relevant reducing and oxidizing conditions. Characterization via LC-MS, MS/MS, UV-vis, and NMR revealed that adjacent histidine residues of the bis-His site are the main target of Cu-catalyzed oxidation, with predominant modifications being 2-oxo-His and His-His cross-links that give rise to distinctive electronic absorption features between 300-400 nm. Doubly- and triply-oxygenated peptides, intramolecular His-His cross-links, and multimers in the case of a shorter model peptide were also observed. The configuration of the bis-His motif may enable Cu reactivity not available in systems where His residues are not adjacent in sequence or space. These results expand the possibilities of oxidative modifications available to other proteins and peptides containing multiple histidines.
Collapse
Affiliation(s)
- Leah J Bontreger
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Annastassia D Gallo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jaewon Moon
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Peter Silinski
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Eric E Monson
- Center for Data and Visualization Sciences, Duke University Libraries, Durham, North Carolina 27708, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Ławkowska K, Bonowicz K, Jerka D, Bai Y, Gagat M. Integrins in Cardiovascular Health and Disease: Molecular Mechanisms and Therapeutic Opportunities. Biomolecules 2025; 15:233. [PMID: 40001536 PMCID: PMC11853560 DOI: 10.3390/biom15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases, including atherosclerosis, hypertension, and heart failure, remain the leading cause of global mortality, with endothelial dysfunction and vascular remodeling as critical contributors. Integrins, as transmembrane adhesion proteins, are central regulators of cell adhesion, migration, and signaling, playing a pivotal role in maintaining vascular homeostasis and mediating pathological processes such as inflammation, angiogenesis, and extracellular matrix remodeling. This article comprehensively examines the role of integrins in the pathogenesis of cardiovascular diseases, focusing on their dysfunction in endothelial cells and interactions with inflammatory mediators, such as TNF-α. Molecular mechanisms of integrin action are discussed, including their involvement in mechanotransduction, leukocyte adhesion, and signaling pathways that regulate vascular integrity. The review also highlights experimental findings, such as the use of specific integrin-targeting plasmids and immunofluorescence to elucidate integrin functions under inflammatory conditions. Additionally, potential therapeutic strategies are explored, including the development of integrin inhibitors, monoclonal antibodies, and their application in regenerative medicine. These approaches aim not only to mitigate pathological vascular remodeling but also to promote tissue repair and angiogenesis. By bridging insights from molecular studies with their translational potential, this work underscores the promise of integrin-based therapies in advancing the management and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
- Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland
| |
Collapse
|
4
|
Xu X, Xu C, He W, Wei L, Li H, Zhou J, Zhang R, Wang Y, Xiong Y, Gao X. HELM-GPT: de novo macrocyclic peptide design using generative pre-trained transformer. Bioinformatics 2024; 40:btae364. [PMID: 38867692 PMCID: PMC11256930 DOI: 10.1093/bioinformatics/btae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
MOTIVATION Macrocyclic peptides hold great promise as therapeutics targeting intracellular proteins. This stems from their remarkable ability to bind flat protein surfaces with high affinity and specificity while potentially traversing the cell membrane. Research has already explored their use in developing inhibitors for intracellular proteins, such as KRAS, a well-known driver in various cancers. However, computational approaches for de novo macrocyclic peptide design remain largely unexplored. RESULTS Here, we introduce HELM-GPT, a novel method that combines the strength of the hierarchical editing language for macromolecules (HELM) representation and generative pre-trained transformer (GPT) for de novo macrocyclic peptide design. Through reinforcement learning (RL), our experiments demonstrate that HELM-GPT has the ability to generate valid macrocyclic peptides and optimize their properties. Furthermore, we introduce a contrastive preference loss during the RL process, further enhanced the optimization performance. Finally, to co-optimize peptide permeability and KRAS binding affinity, we propose a step-by-step optimization strategy, demonstrating its effectiveness in generating molecules fulfilling both criteria. In conclusion, the HELM-GPT method can be used to identify novel macrocyclic peptides to target intracellular proteins. AVAILABILITY AND IMPLEMENTATION The code and data of HELM-GPT are freely available on GitHub (https://github.com/charlesxu90/helm-gpt).
Collapse
Affiliation(s)
- Xiaopeng Xu
- Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
| | - Chencheng Xu
- Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
| | - Wenjia He
- Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
| | - Lesong Wei
- Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
| | - Haoyang Li
- Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
| | - Juexiao Zhou
- Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
| | | | - Yu Wang
- Syneron Technology, Guangzhou 510000, China
| | | | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Costa L, Sousa E, Fernandes C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals (Basel) 2023; 16:996. [PMID: 37513908 PMCID: PMC10386233 DOI: 10.3390/ph16070996] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic peptides are molecules that are already used as drugs in therapies approved for various pharmacological activities, for example, as antibiotics, antifungals, anticancer, and immunosuppressants. Interest in these molecules has been growing due to the improved pharmacokinetic and pharmacodynamic properties of the cyclic structure over linear peptides and by the evolution of chemical synthesis, computational, and in vitro methods. To date, 53 cyclic peptides have been approved by different regulatory authorities, and many others are in clinical trials for a wide diversity of conditions. In this review, the potential of cyclic peptides is presented, and general aspects of their synthesis and development are discussed. Furthermore, an overview of already approved cyclic peptides is also given, and the cyclic peptides in clinical trials are summarized.
Collapse
Affiliation(s)
- Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| |
Collapse
|